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Abstract. Since Abel and Galois, modular curves have always joined algebra

and complex analysis. Since 1960, strongly in two considerations: Serre’s Open

Image Theorem (OIT); and the Shimura-Taniyama-Weil Conjecture that pos-
tulated a formula by which an elliptic curve over Q (of given conductor) might

be uniformized by a modular curve whose upper half plane quotient was defined

by a specific congruence subgroup of SL2(Z). There were some small accidents
with modular curves producing new groups as Galois groups over Q, but not

regularly. So, there was no general relation between `-adic representations, say

as in generalizing Serre’s OIT, and the Regular version of the Inverse Galois
Problem that came together over generalizing modular curves.

Ch. 1 and Ch. 2 tie up threads that came just before Modular Towers

(MTs). They show how Hurwitz spaces encode versions of the Inverse Galois
Problem. Also, by geometrically connecting with classical problems, why the

Inverse Galois Problem has been so difficult. We modernize our approach to

investigating moduli (definition) fields of Hurwitz space components vis-a-vis
lift invariants with examples.

Ch. 3 joins the first third and last third of the book in a new approach
to the lift invariant and Hurwitz space components based on the universal

Frattini cover of a finite group, the main ingredient behind MTs.

Ch. 4 explains MTs – started in 1995 – as a program giving such a
relationship. We use that to interpret the OIT in a generality not indicated

by Serre’s approach. Ch. 5 uses one example, close to modular curves, that

is clearly not of modular curves. This explains why our approach to (families
of) covers of the projective line can handle a barrier noted by Grothendieck to

generalizing the OIT.

Primary 11F32, 11G18, 11R58; Secondary 20B05, 20C25, 20D25, 20E18, 20F34

Moduli of covers, j-line covers, braid group and Hurwitz monodromy group, action

on cohomology, Frattini and Spin covers, Lift invariants
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This book naturally divides into two parts of two chapters each, flanked by

two chapters of a bridge nature. Part I: Hurwitz spaces and the Inverse Galois

Problem, comprising Ch. 1 and Ch. 2. Both include much exposition and observa-

tions/examples we didn’t have time for in the original papers.

Then, Part II: Hurwitz Monodromy on `-adic representations and Modular Tow-

ers comprising Ch. 4 and Ch. 5. Most of Part II is new, but we will publish separately

many of the proofs. Between these two parts lies the first bridge, Ch. 3, based on

using Frattini covers of groups. It completes Part I, sliding it into the main issues

in Part II, expanding territory untreated since the publication of [FrV91].

Ch. 1 and Ch. 2 show how Hurwitz spaces interpret problems that require un-

derstanding solutions to equations that relate two complex variables. The foremost

relation is given by a compact Riemann surface W mapping to the Riemann sphere

P1
z in a variable z: ϕW : W → P1

z. The foremost problem is the Regular Inverse

Galois Problem, RIGP.

Interpreting diophantine problems assiduously uses the Galois closure, and its

monodromy group, of such a cover. There have been papers with examples, where

the two halves of the title

[`-adic representations] and [the RIGP]

could be said to relate. Yet, we use generalizing Serre’s Open Image Theorem

(OIT), a result about points on modular curves, to show that relation has not

previously aimed at a fitting conclusion. The group theory of this extension de-

pends on the universal `-Frattini cover of the finite group G. The exposition on this

topic is not found anywhere else. This device gives Modular Towers (MTs) whose

tower levels generalize classical modular curve levels.

The definition of MT first appears in Ch. 3 Def. 3.3 as a tower of absolutely

irreducible components of a sequence of Hurwitz spaces for which the base Hurwitz

space is defined by group G, a prime ` dividng |G|, and `′ conjugacy classes C of G.

The main ingredient in forming the tower is a sequence of `-Frattini extensions of

G. Modulo testable conditions, the data (G,C, `) produces a canonical, nonempty,

tower of Hurwitz spaces.

The group for the data of each level is a cover k` ψ̃ : k`G→ G with:

(0.1)
ker(k` ψ̃) = (Z/`k)ν a Z/`k[G] module; and

ν > 0 independent of k, k ≥ 0.

For given (G, `), Ch. 6 Prop. 1.28 describes a maximal (finite) ν
def
= ν(G, `)max.

We state the the rubric for the typical case that G is `-perfect (has no Z/`)

quotient) although circumstances and comparison with classical results sometimes

require modification to include this case. The main point is that without excluding

nontrivial nilpotent quotients of k
`G, there won’t be a canonical construction.
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(0.2a) For ν = ν(G, `)max , (Z/`k)ν has these properties:

• It is an indecomposable Z/`k[G] module;

• k
` ψ̃ is universal for covers of G with abelian exponent `k kernel; and

• ν(G, `)max > 1 except when G is a slight generalization of dihedral.

(0.2b) The (Hurwitz) monodromy action arises on the Z`[G] module kernels,

LG,`, of lim←k
k
`G→ G.

(0.2c) The action of (0.2b) identifies with an action on flags in H1(X0,Z`) with

X0 a curve in the family.

Thoughout the book we use the abbreviation RIGP for the sl Regular Inverse

Galois Problme, and OIT for some version of the Open Image Theorem. Often,

ν(G, `)max is the only possible value of ν (> 0) in (0.1). Each possible value of

ν presents its own challenges to the RIGP and the OIT. When G is close to a

dihedral or alternating group, points on tower levels include classical problems for

both the RIGP and OIT. It is, though, the relation between them that is most

interesting.

For a version of the OIT like Serre’s – including all modular curves – for us

there are two collections of related groups,

{D`}primes ` and {(Z/`)2 ×sZ/2}primes `.

For each group in each series, the conjugacy classes naturally extend from four

repetitions of the non-trivial class in Z/2.

To show how generalizing the OIT works, we use one example (in the sense that

all modular curves are one example). Our example exhibits the features of Serre’s

example, though our MT levels are not modular curves. A striking difference is

the appearance of the lift invariant) among the levels of our MTs. At all times we

note comparisons (cusps included) with modular curves. This approach circumvents

a difficulty noted by Grothendieck – stemming from the many correspondences on

Jacobians – for generalizing the full force of Serre’s OIT, Ch. 6 6.3. A reader can see

this in following the Hurwitz monodromy approach to computing the monodromy

action (Ch. 4) on the `-adic representations.

Before getting to the RIGP or OIT, we develop the basics of how Hurwitz

spaces work. The first basic is to describe equivalence classes of covers associated

to a group G and conjugacy classes C – whose elements generate G; we suppress

these in this exposition – from which we produce a Hurwitz space H(G,C). The

second basic is conditions that guarantee that any point on the Hurwitz spaces will

produce a curve cover that solves the arithmetic problem for which we aim.

This comes together in the description of the moduli field QG,C of the Hurwitz

space H(G,C). This depends on the equivalence class of covers representing those

points, which in turn is fashioned toward the desired arithmetic problem. For a point
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ppp on a Hurwitz space component H to corresponds to a cover in the equivalence

class represented by ppp, its coordinates must generate over Q, Q(ppp), a field containing

the moduli field QH of the Hurwitz space. Further, H having fine moduli then

guarantees such a representing cover over Q(ppp). The moduli field appears from the

appropriate version of the Branch Cycle Lemma (BCL), Ch. 2 Lem. 4.1.1

When, however, H has more than one component, any given component, say

H′, has its own moduli field QH′ containing QG,C. Further, often a treatment of it

is similar to the BCL using a lift invariant, a major topic in this book.

Ch. 6, has its own overview of the book. Material serves as appendices that

enhance our examples. Note Ch. 6 §1.1.1: For permutation groups we usually use

right actions, though occasionally concede to linear algebra matrix left action.

1Called the Branch Cycle Argument on [Fr77, p. 62].



CHAPTER 1

Covers and monodromy groups

The key inputs for a cover of the Riemann sphere, P1
z, uniformized by a fixed

complex variable z, are a finite group G and a choice of its (unordered) conjugacy

classes, C = {C1, . . . ,Cr}. We start slowly with the case W = P1
w, as a reminder

examples of such appeared in High School math classes.

From (G,C) we form a Nielsen class, Ni(G,C); an equivalence on Nielsen class

elements; and an action of the braid group (actually its quotient, the Hurwitz

monodromy group, Hr) on r-strings (§2 and §3).

We can understand algebra and (complex) geometry coming together with one

of the beginning formulas that connects the spaces of covers to the absolute Galois

group of Q through the Branch Cycle Lemma (BCL). Among its applications it

gives the minimal definition (a precise cyclotomic) field of these spaces. That gives

us the tools to introduce MTs, Ch. 4, and the `-adic representations they support.

Fundamental properties of the spaces come from braid group action on Nielsen

classes. The first use is that Hurwitz space components correspond to the orbits

of the action. While the Nielsen class of a cover is a strong invariant, when there

is more than one component to a Hurwitz space – one cover will not deform into

all other covers in the Nielsen class – there are often good explanations. The long

history of applications to easily stated problems using the components of these

spaces (and their definition fields) is not well known. We give many examples.

1. The Regular inverse Galois Problem

Assume K ⊂ Q̄, the algebraic numbers, with GK its absolute Galois group. §1.1

differentiates the Inverse Galois Problem from the RIGP. We cannot escape using

some specific group theory for results, and for enriched examples. Our introduc-

tion to this is §1.2 which has the homological algebra to differentiate the many

examples of split and none split extensions of groups we use to illustrate our main

theorems. Then, §1.3 introduces Frattini covers. Recall the group, (H,H) generated

by commutators of H.

The spaces that we form are based on starting with a centerless finite group G,

and a prime p dividing |G|. Constructions use profinite collections of finite group

covers ψ : H → G with the following properties:

17
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(1.1a) ψ is a Frattini cover; and

(1.1b) ker(ψ) is an `-group contained in (H,H).

If G has no Z/` quotient – G is `-perfect, Def. 1.2 – then the commutator condition

is automatic, and that is the easiest case to consider. There is a universal cover

of G §1.3, giving all elements of EG,p as a quotient. The `-group kernel is finitely

generated, and it leads to several universal objects that are quotients of this, and

sequences of spaces that are somewhat maximal challenges to unsolved problems,

say, about the RIGP. As we see, however, by looking at the OIT, even given one

(G, p), there is a whole world of spaces with modular curve-like sequences of spaces

attached to it, with conjectured diophantine properties. Most of these come from

smaller quotients of the universal cover. We can be more explicit about the group

theory for constructing these. Therefore, in our examples, we tend to use these,

leaving their descriptions to Ch. 6 §1.5.5.

1.1. The IGP vs the RIGP. A group G is a Galois group over K, if G is

a quotient of GK : There exists an exact sequence ψ : GK → G → 1. We say, K

satisfies the IGP if this holds for all finite groups G. This isn’t known for any finite

extension K – a number field – of Q. One aspect of Ch. 2 is to show you just how

far from known it is, and how much that is related to many renown problems that

don’t at first seem to have much to do with it.

Similarly, G is a regular Galois group over K if for each G,

there exists ψ : GK(x) → G→ 1, with (the fixed field of ker(ψ)) ∩ K̄ = K.

The major success on the IGP has come through the RIGP for which the

basic tools are versions of Riemann’s existence theorem followed by specialization

(Hilbert’s irreducibility theorem). That is, an RIGP realization gives ∞-ly many

independent realizations of G as a quotient of GQ. Constructing just one out of thin

air doesn’t seem to work well, except for groups regarded as obvious in the history

of group theory: abelian groups, Sn s and groups close to dihedral groups.

Mysteries for Rational functions?: Even for dihedral groups, there is a simple

mystery connected to famous problems about modular curves (§6.1.3), whose de-

scription we can give naturally using rational functions in one variable. Applying

serious Galois theory is wholly different than quoting the technical equivalences

around its fundamental theorem. We illustrate with many examples.

Here z indicates the complex variable from a 1st year graduate course. Changing

from the High School x to w or z just indicates we intend to plug in complex values.

Each Hurwitz space is seeded by a finite group G and r ≥ 3 conjugacy classes C

of G. These indicate our concentration on the type of ramification of covers of the

projective line P1
z. For the cycle type of an element g ∈ Sn, the symmetric group
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of degree n, a reasonable notation would be (u1)(u2) · · · (ut), indicating that g is a

product of disjoint cycles of respective lengths u1, . . . , ut.

For example, in S5, (5) indicates a disjoint cycle of length 5. This stipulates g

as a representative of the unique conjugacy class of 5-cycles in S5. Yet, we can also

regard a 5-cycle as an element of A5, which has two (conjugacy) classes of 5-cycles,

represented by (1 2 3 4 5) and (1 2 3 5 4).

For an example of a cover of compact Riemann surfaces, consider

f : P1
w → P1

z by f : w 7→ w3−1

w2+w+1
=
f1(w)

f2(w)
,

with f1, f2 ∈ C[w]. This might have appeared in a high school SAT exam, with this

question: what is f in lowest terms?

We would expect a student to see that the numerator and denominator have a

common factor, and f = w−1. The degree, deg(f), then is max(f1, f2), if they are

in lowest terms. The correct value of deg(f) is 1.

The Hurwitz spacesH(G,C) appeared in [Fr77] along with the first applications

of the BCL giving their precise moduli fields. We concentrate on how they are

moduli spaces of equivalence classes of covers. For given (G,C) there are several

Hurwitz spaces, depending on our choice of equivalence between covers.

Yet, all equivalences (denote such here by †) have direct interpretation on the

Nielsen class, Ni(G,C)†. Then the permutation representation of Hr on Ni(G,C)†

produces H(G,C)† as a cover of Ur, projective r-space, Pr, minus its descrimi-

nant locus. We use dihedral groups and alternating groups as running examples

throughout the book.

Our example(s), §4.2 and §1.1, are handy in following this. The former is an

exemplar continuing in several places, that starts with §2.7. That presents the

absolute version as a space of rational function covers. Like in high school; as

above, though not the ones you had in high school; those behind the scenes you

had if you studied modular curves as in §4.2.

A context for statements on the RIGP: One should be suspicious, 120+ years

after Hilbert’s formulation, that some magic – without considerable additional in-

sight – might suddenly produce all groups as Galois groups over Q. Generally,

nilpotent G (product of its `-Sylows) have been realized through the IGP, but

mostly not at all through the RIGP. 1

1Dividing finite groups between abelian and non-abelian, or between solvable and non-
solvable, fails to capture how we display and control the relation between the RIGP and `-adic
representations. Key words for that put nilpotent groups on one side, and `-perfect – referencing

a prime ` dividing the order of the group – on the other (§1.3).
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Definition 1.1. If a variable `, say, clearly indicates a prime, then the phrase

`′, applied to any collection related to groups means that the collection consists of

elements whose orders are prime to `.

Definition 1.2 (`-perfect G). Complementary to nilpotent is `-perfect:

`||G|, but Z/` is not a quotient of G.

Then, `′ elements generate G. It is elementary that `-perfect for all `||G|, is equiv-

alent to G is its own commutator subgroup [G,G] (again, take its closure for the

profinite case): G is perfect.

Any nilpotent group G for which `||G| has both a nontrivial ` center and a

nontrivial Z/` quotient. While nilpotent groups naturally generalize abelian groups,

because of their nontrivial centers, they don’t amend themselves to the Hurwitz

space approach. Therefore, if we consider Hurwitz spaces based on them, a Q point

on such a space doesn’t automatically give a regular realization.

This is as in Ch. 2 Thm. 1.7 whose proof uses the idea that for any G, we may

form a cover H → G where H has no center. Yet, H will fail being `-perfect if G

is not `-perfect, Still, we may substitute H for G to assume G has no center. Any

regular realization of this new G makes moot one for the old G.

One problem: Most finite groups requires a different approach than anything

akin to the finite group classification. For example, let us start from any group G,

that is, say, `-perfect and centerless. Then, there exists v(G) > 0 (outside a slight

generalization of dihedral groups, > 1) giving the universal exponent `k+1-Frattini

extensions

(Z/`k)v(G) → k+1
` G→ G, k = 0, 1, . . . ,∞ ( §1.4).

Even for G = A5, and ` = 2 where v(G) = 5 (§1.6) for no k > 0 has any of these

been realized over Q, regularly or not.

Problem 1.3 (Basic RIGP problem). For a given centerless finite group G,

and field K, what are the conjugacy classes C for which there is a solution to the

RIGP for (G,C)?

Definition 1.4. A standout case in Cor. 4.7 has

Q(G,C) = Q : Cn = C, for all n ∈ (Z/NC)∗ (2.42).

We say C is a rational union of conjugacy classes; it is necessary for an RIGP

solution for (G,C) to exist over Q, with or without fine moduli.

If we take K = Q, then we would be satisfied with an answer like this.
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Consider distinct conjugacy classes C′ in G that form a rational union (Def. 1.4).

Assume C runs over rational unions of conjugacy classes with support in C′.2 Must

there be infinitely many such C fwith a solution to the RIGP for (G,C)?

For a first engagement with this problem, consider this result with the hypothe-

ses for C′ and C above. There is a solution to the RIGP for (G,C) for every PAC

subfield of Q̄ precisely for those C for which H(G,C)in has an absolutely irrducible

Q component as a moduli space. This holds for all but finitely many C satisfying

this additional hypothesis:

(1.2) Each element of C′ appears in C sufficiently often.

§2 discusses present knowledge of irreducible Q components on inner Hurwitz

spaces given by such (G,C′). On these components, running over the finite set

of possible C′, are located the Q points that correspond to any possible RIGP

solutions over Q for G.

[Se92] lists just three rank > 1 Chevalley groups which were known to have

RIGP realizations over Q in the early ’90s as he completed his book. Thompson

and Voeklein gave positive solutions to the RIGP over Q for many series of simple

Chevalley groups of arbitrary high rank, including [Th90], [Vo92], [Vo94]. These

all used versions of the braid group monodromy method producing explicit Hurwitz

spaces with rational points from the technique behind Ch. 2 Thm. 1.7.

The A(bsolute)IGP: More often we seek regular extensions L/K(z) with Galois

closure L̂/K(z) where, with K̂ the constant field of L̂, G(L̂/K̂(z)) is G. Then, G is

the geometric monodromy group (of L/K(z)), a normal subgroup of the arithmetic

monodromy Ĝ = G(L̂/K(z)) (also, ≤ Sn).

This is a (G, Ĝ) realization. Finding such for some Ĝ is the A(bsolute)IGP (we

often care which Ĝ s are achieved). For example, consider rational functions f over a

number field K that have the Schur cover property of Prob. 1.5. Denote the residue

class field of K at a prime ppp by Fppp.

Problem 1.5. Find pairs (f,K) for which f : P1
w(Fppp) → P1

z(Fppp) as a map is

one-one for infinitely many primes ppp of K.

We described the solution of this problem in [Fr17, §2.3.2] (based on [Fr78,

§2] and [GuMS03]) as leading to the relation between absolute and inner Hurwitz

spaces (Thm. 3.5). That gave a general tool, for which one corollary was the first

presentation of GQ (Ch. 3 Prop. 5.9). Many practical problems that engage the

properties of functions have a strong connection to the A(bsolute)IGP.

2If C is a rational union of classes, then the union of the distinct classes in C is automatically

a rational union since the definition applies to the underlying sets of elements.
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1.2. Groups through matrix multiplication. Behind all our geometric

objects lies an interplay between non-nilpotent finite groups and actions of a quo-

tient of the braid group. Except for the phrase ”Frattini cover” (Def. 1.14) all our

example finite groups appear in a first graduate algebra course.

We introduce the notation for semidirect products. As we will see, the same no-

tation gives a memorable device for understanding some of the cohomology state-

ments on extensions that we often use. While many readers likely have seen a

treatment of this at some time, these reminders will come in handy. [Br82, p. 87–

90] is an alternative consultation point, even if our notation differs, since we use

that text and [Nor62], often later.

Start with an action of any group G on an abelian group A, using the notation

g ∗ a, g ∈ G, a ∈ A for that action. Consider a short exact sequence

(1.3) 0→ A→ E
ψ−→G→ 1, with G acting by a fixed action on A.

1.2.1. Splittings. Start with ψ splittings. This is a homorphism G
s−→E for

which ψ ◦ csp = IG – the identity map on G – for which the following hold:

s(G) ∩A = {1E}; s(G) ·A = E, · indicating set theoretic product; and
the conjugation action of s(G) on A is the original action of G on A.

Definition 1.6. If ψ has a splitting, this identifies E set theoretically with

G × A. Denote that identification by A ×sG, or A ψ×sG if we must indicate G

acting on A through g ∗ a def
= eae−1 for any lift e of g to E.3

By explicitly denoting s(g) ∈ G × A as (g, csp(g)
def
= ag) we recapture that s is

a homomorphism through 2× 2 matrix multiplication.4

(
g1 ag1
0 1

)(
g2 ag2
0 1

)
=
(
g1g2 g1∗ag2+ag1

0 1

)
, or csp(g1g2) = g1 ∗ csp(g2)+csp(g1).

Once you have determined what s does, embedding of A by a 7→
(

1 a
0 1

)
de-

termines the rest of the multiplication through(
1 a
0 1

)(
g ag
0 1

)
=
(
g ag+a
0 1

)
.

The 1-cocycle csp is called a derivation. [Br82, p. 88] suggests the name looks

more reasonable by regarding G as acting on the right of A with the trivial action.

That is, ag1 = ag1 ∗ g2. Maybe!

3We will take advantage of familiarity with matrix multiplication, but for permutation actions
to act on the “integers” of the representation on the right.

4For G action on the right (as in §1.1.1):
(
g1 0
a1 1

)(
g2 0
a2 1

)
=

(
g1g2 0

a1∗g2+a2 1

)
. Or when

we want to include A not abelian replace a1 ∗ g2+a2 by a1 ∗ g2 · a2, as in, say, Ch. 6 §3.3.2.
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We often identify the splitting s with another, say s′, that differs by conjugation

by an element of A. That is, if the latter were given by g 7→ c′s(g) with( g a′g
0 1

)
=
(

1 a
0 1

)(
g ag
0 1

)(
1 −a
0 1

)
, a ∈ A independent of g.

Multiplying the matrices gives c′(g)−c(g) = a−g ∗ a, a bounding 1-cycle.

Definition 1.7 (H1(G,A)). The quotient, splitting 1-cycles mod bounding

1-cycles, are the elements of the first cohomology, H1(G,A), of G with coefficients in

A. Given one splitting of a semidirect product, A×sG, all others are a homogenous

space whose elements correspond to H1(G,A).

1.2.2. Extensions. Use notation for G acting on A above. Consider an extension

E of G with ker(ψ) in (1.3). Refer to another extension E′ of G replacing E as

equivalent to (1.3) if an isomorphism E → E′ induces the identity on G and on A.

Even if ψ doesn’t split, we may still consider a section s : G → E for ψ, though

now we don’t assume s is a homomorphism.

To put a group structure on G × A compatible with s, write s(g) = (g, ag) as

above. We can simplify by adjusting the section so that s(1G) = (1G, 0A). Indeed,

here we expect our choice of section only to modify the multiplication in a standard

way, so to simplfy our first attempt take ag = 0, g ∈ G.

Once we have a multiplication of the elements of the form s(g), then the au-

tomatic multiplication by the elements of the form
(

1 a
0 1

)
completes the multi-

plication (and so an extension E) if and only it has an identify, is associative and

elements have inverses. For simplicity here denote agi by ai, i = 1, 2.

Similar to the previous, any “multiplication” on G×A forces a matrix product

from a function, ce : G×G→ A:(
g1 a1
0 1

)(
g2 a2
0 1

)
=
(
g1g2 g1∗a2+a1+ce(g1,g2)

0 1

)
.

We have just stipulated an identify. The group multiplication is associative if and

only if multiplying the matrices for (s(g1)s(g2))s(g3) and s(g1)(s(g2)s(g3)) have the

same upper-right entry. This is equivalent to

(1.4) ce(g1, g2) + ce(g1g2, g3) = g1 ∗ ce(g2, g3) + ce(g1, g2g3).

As for the inverse, solving for a′ in(
g a
0 1

)(
g−1 a′

0 1

)
=
(

1 0
0 1

)
gives a′ = −g−1 ∗ (ce(g, g−1)+a).

With the multiplication in the other direction, the unique solution for a′ is −g−1 ∗
a−ce(g−1, g). Apply (1.4) with g1 = g−1, g2 = g, g3 = g−1 to see the inverses are

the same.5

5Matrix multiplication is useful for working out particular cases, as we will, though it is

equivalent to [Br82, p. 92], which only lists the inverse, and includes a peculiar typo.
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Finally, suppose you take another choice s′ of s, with s(1) = (1G, 0A). Then,

s−s′ is given by any function cb : G → A – an A-modification of the splitting –

taking 1G to 0A. To compute c′e associated to s′ calculate the term that belongs in

the slot labeled {??}:(
g1 a1+cb(g1)
0 1

)(
g2 a2+cb(g2)
0 1

)
=(

g1g2 g1∗(a2+ce(g1,g2)+cb(g2))+a1+cb(g1)
0 1

)
=
(
g1g2 {??}+cb(g1g2)

0 1

)
.

The difference ce(g1, g2)−c′e(g1, g2) is

(1.5) g1 ∗ cb(g2)−cb(g1g2)+cb(g1).

Definition 1.8 (H2(G,A)). Denote quivalence classes of extensions (1.3) with

the given G action on A, modulo the A-modifications, by H2(G,A). The identity

element of this abelian group is the split extension.

Why H2(G,A) is H2(G,A): We now say why this “definition” actually is what

the literature calls H2(G,A). Our goal is to place the extensions of Def. 1.14)

among all extensions, rather than developing cohomology theory. Still, cohomology

will give us tools (as in Prop. 1.28) for actually displaying extensions in the main

objects of our study.

The elements of HomG(Z[G]n, A) are given by functions from Gn → A (then

extend linearly). In this case ce ∈ C2(G,A) is a function – called a factor set in the

literature – G2 → A. Then, ∂(ce)(g1, g2, g3) is just what you get from subtracting

the term of (1.4) on the right, from the left side.

This piece of the projective resolution of 111G, with this coboundary operator, is

the degree 2 part of the bar resolution of Z as a Z[G] module, with the cohomology

defined by the quotient of the kernel of ∂ by the image of ∂ from HomG(Z[G], A).

That is, by applying ∂ to functions cb : G → A to get (1.5). Between these two

examples, it should now be clear what ∂ does for general n.

Remark 1.9. When G acts trivially on A, a 1-cocycle (derivation) is just a

homomorphism G→ A, or H1(G,A) = Hom(G,A).

Remark 1.10 (Schur-Zassenhaus). We don’t intend to limit discussing exten-

sions, split and otherwise, to only those statements we prove. Rather to have, when

we need it, appropriate reminders. For example, the following results from compos-

ing the restriction and corestriction maps on cohomology/homology (as in (6.33)).

Proposition 1.11. For [G : H] < ∞, A a G module, if Hn(H,A) = 0, then

multiplication by [G : H] annihilates Hn(G,A). [Br82, III. Prop. 10.1]

Thus, [Br82, IV. Cor. 3.13]) gives Schur-Zassenhaus: If (|A|, |G|) = 1, there is

a unique, so split, extension of G when A is abelian, an essential case – the one



1. THE REGULAR INVERSE GALOIS PROBLEM 25

we use. Once you know Feit-Thompson – odd order groups are solvable – it is true

even if A is not abelian.

Remark 1.12 (Affect of endomorphisms). Suppose ψ ∈ EndG(A)6 (a module

homorphism that commutes with the action of G). Then, ψ acts on an extension

cocycle by ce 7→ cψe : G×G→ A by compositing with ψ. This, however, won’t be a

new cocycle, but rather one that differs from ce by the coboundary of a−aψ from

replacing the original section given by g 7→ ag by g 7→ aψg , as in (1.5).

1.3. Frattini extensions. Groups theorists tend to love classifications, and

they will tell you that there are many types of extensions of groups.

We emphasize: This book is not classifying extenions.

The group extensions – Frattini covers – of our concentration can be applied to

the moduli spaces of sphere covers that appear in Ch. 2 to canonically produce

the sequences of moduli spaces we call MTs in Ch. 4. For any finite group G and

prime ` dividing its order, this Frattini property is what produces such towers of

spaces canonically. Indeed, we can illustrate most everything in the book staying

very close to one example of a pair (G, `), so long as `||G| and G has no Z/` quotient

(is `-perfect). To show how much the book is about classical diophantine problems,

we can take the case G is a dihedral group of order 2` with ` odd. To, however,

seriously open the territory, we have only to go beyond that case, still using groups

known to any graduate student in mathematics.

Going beyond the dihedral group case, requires group theory outside a 1st year

graduate course. The goal of the book is to explain the properties of these tower

levels, including how they get right to the heart of the RIGP and generalizations

of the OIT. Especially, we require control over the components of these spaces, and

of the fields over which we can assure that points of the spaces are producing sphere

covers that are give positive conclusions to the diophantine problems. For starting

RIGP applications, Ch. 3 concentrates on those central Frattini extensions E → G

with the kernel in the commutator subgroup of G.

For any G and ` as above, there is a concise maximal object that gives all `-

Frattini covers as quotients. §1.3.1 produces that, and then §1.3.2 gives the universal

object, the characteristic `-Frattini module `MG which controls all Frattini covers

with `-group kernel, and also their universal objects with abelian `-group kernel. It

is from these that the `-adic representations of the title appear. Denote an `-Sylow

of G by P`. For very good reason7 we divide these objects into two types.

(1.6a) Those directly derived from `MG.

6endomorphism: action on a cocycle
7To avoid entanglement in aspects of modular representations of finite groups classify .
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(1.6b) Those from quotients of the characteristic module for P` induced to G.

Ch. 3 §2.3.2 has a homological characterization of (1.6a), using this as a primer

in more sophisticated used of the Ext functor. Ch. 6 §1.5.5 gives a homological

characterization of (1.6b), which is especially intended to illustrate the great number

of definitions of modules for the group algebras Z/`[G] that can be so overwhelming

to a beginner, including working examples of specific modular representations Ch.

6 §1.6, which we reference when suitable in earlier chapters.

1.3.1. The Frattini construction. A homomorphism ψ : H → G is a cover if

it is surjective. A cover automatically produces an extension, but the kernel (as in

(1.3)) is not necessarily abelian. Even so, the extensions we are about to construct,

which are extreme in that they are the opposite of split, can mostly be understood

from extensions with abelian kernel.

Definition 1.13. Given two covers ψ : Hi → G, i = 1, 2, their fiber product

H1 ×G H2 = {(h1, h2) | ψ1(h1) = ψ2(h2)}

is a universal target for covers ψ : H → G factoring through ψi, i = 1, 2.

That is, given ψ = ψ1 ◦ ψ′1 = ψ2 ◦ ψ′1 with ψ′i : H → Hi, there is a natural

homomorphism (ψ′1, ψ
′
2) : H → H1 ×G H2. This doesn’t mean ψ factors as a cover

of the fiber product. Compare Lem. 1.16 with Lem. 2.4.

Frattini covers and kernels: For ` a prime, a pro-` group is a profinite group for

which all its finite quotients are `-groups. A projective profinite group, P , has the

property that for any cover ψ : P → G, if ψ′ : H → G is a cover, then there is a

homomorphism (not necessarily a cover) ψ′′ : P → H for which ψ′ ◦ ψ′′ = ψ.

Definition 1.14. We say ψ is Frattini if it is a group cover, and if H∗ ≤ H

maps by restriction of ψ as a cover of G, then H∗ = H.

Lem. 1.15 in some form is due to Frattini. It is akin to [FrJ86, Lem. 20.2]1 or

[FrJ86, Lem. 22.1.2]2. While both its statements are valuable, we primarily use the

former. Denote the Frattini subgroup of any (pro-)finite group G – the intersection

of all (proper) maximal subgroups of G – by Φ(G).

Lemma 1.15. For Frattini covers ψ : H → G, ker(ψ) is nilpotent (Ch. 6 §1.1.1).

Further, given G, G→ G/Φ(G) is the maximal Frattini cover by G.

Proof. For the first statment, consider any g ∈ G, and choose a lift hg ∈ H
of g to H. Then, hgPh

−1
g is another `-Sylow of H. Apply the Sylow theorems: all `-

Sylows in P are conjugate in ker(ψ). Thus, hgPh
−1
g = ugPu

−1
g for some ug ∈ ker(ψ).

That is, hgu
−1
g is in the normalizer, NH(P ), of P in G.
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Now consider the subgroup N ′ = 〈hgu−1
g | g ∈ G〉. It is in NH(P ) and it covers

G. Since ψ is a Frattini cover, N ′ = NH(P ) = H. Therefore P is a normal subgroup

of ker(ψ) and ker(ψ) is nilpotent.

Now consider any profinite G. Suppose M < G maps surjectively to G/ϕ(G).

With no loss, take M maximal. Since it contains Φ(G), M/Φ(G) is a proper sub-

group of G/Φ(G), contrary to assumption. �

Recall the rank, rk(G), of a profinite group is the minimal number of elements

generating a subgroup whose closure is G. We easily extend the notion of Frattini

cover to profinite groups. Immediately, if H → G is a Frattini cover of profinite

groups, then the lift of any generators of G to H gives a subgroup whose closure

maps onto G. Therefore rk(H) = rk(G). See Rem. 1.18.

Lemma 1.16. Assume ψi : Hi → G, i = 1, 2, are Frattini covers. Then, any

H ≤ H1 ×G H2 that covers G automatically covers Hi, i = 1, 2.

A minimal (not necessarily unique) subgroup of H1 ×G H2 is a Frattini cover

of G. From Def. 1.14, a Frattini cover ψ : H → G, rk(H) = rk(G).

Also, Frattini covers of perfect groups are perfect.

Proof. Suppose H ≤ H1×GH2 covers G by restriction of (ψ1, ψ2). Then, the

image of H in Hi by projection is a subgroup of Hi that is a cover of G. Since ψi

is a Frattini cover, the image must be all of Hi, i = 1, 2. If H is minimal as a cover

of G, then, by definition, it must be a Frattini cover.

Now suppose G is a perfect group, and ψ : H → G is a Frattini cover. Consider

the commutator subgroup [H,H] of H. (If the groups are profinite, consider the

closed subgroup generated by [H,H].) It maps onto [G,G] = G by ψ, and so it

covers G. Since ψ is a Frattini cover, [H,H] = H. This concludes the proof. �

Definition 1.17. Since Frattini covers of G form a projective system, they

produce a profinite cover, the Universal Frattini cover, ψ̃G : G̃ → G that factors

surjectively through any Frattini cover of G.

Remark 1.18. [FrJ86, Chap. 22]2 is more encyclopedic than we will be. In

particular, our Frattini covers will usually have finite (or at worst, countable) rank.

Larger cardinality can require more careful proof.

Constructing ψ̃ : G̃ → G: A Frattini cover ψ : H → G is a structural idea. We

apply it only to profinite groups – where subgroup means closed subgroup – and

especially to finite groups. Suppose G has rank t. Denote the profinite completion

of the free group Ft on t generators with respect to all subgroups of finite index

by F̃t. Consider any fixed map ψ̃t : F̃t → G, by mapping generators of F̃t to

ggg
def
= {g1, . . . , gt}, generators of G.
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Lemma 1.19. The group G̃ is a closed subgroup of F̃t. Therefore, the cover ψ̃

is projective in the category of profinite groups.

Proof. Here is a way to produce G̃. Take the lift to G̃ of any collection, g̃gg of t

elements that lift to F̃t, a set of generators of G. Let H̃g̃gg be the closure of the group

generated by g̃gg in F̃t. There is no way to assure that the natural map ψ̃ : H̃g̃gg → G

is a Frattini cover.

Still, the axiom of choice lets us form a maximal chain (by containment) of such

covers, with an indexing {H̃g̃ggα}α∈I . By the Tychonoff Theorem the intersection,

H̃∞, of all of the H̃g̃ggα is closed in F̃t. We easily show it is a subgroup having a

limit set g̃gg∞ that maps onto ggg by restriction of ψ̃. Since the chain was maximal,

H̃∞ → G must be a Frattini cover.

Should µ : H̃∞ → V and ν : V ′ → V be covers of groups, then we can extend

the map µ to F̃t. Then extend µ to µ′ : F̃t → V ′ and restrict µ′ to give H̃∞ → V ′

extending ν. This says that H̃∞ is projective. �

Remark 1.20. If we relied on the unconstructive Lem. 1.19, we would know

little of the necessary information we will need about characteristic quotients of

G̃, as in §1.4. These provide information on the levels of the towers of the moduli

spaces at the heart of this book.

Remark 1.21. The end argument of the proof in Lem. 1.19 is a special case of

a general result that closed objects of a free object are projective.

1.3.2. Universal `-Frattini covers. Reminder: a profinite group is nilpotent (or

pronilpotent in the profinite case) if it is a product of its (pro-`) `-Sylows. For each

prime ` dividing the order of a nilpotent group N , there is a cover N → Z/`.

For ψ : H → G a Frattini cover, write ker(ψ) =
∏
`i||G|,i=1,...t ker(ψ)`i (Def. 1.14)

indicating the product is over its `-Sylows. For each `i, quotient out by all the `j-

Sylows, j 6= i, in ker(ψ) to form ψ`i : H`i → G.

The fiber product of the H`i s over G equals H. Many structural statements on

ψ̃ : G̃ → G appear in [FrJ86, Chap. 22]2. We have picked some that are essential

to understanding ψ̃ and its quotient groups. Especially as they apply to detecting

components of Hurwitz spaces and constructing M(odular)T(owers).

Now decompose ker(ψ̃G) as a product of its `-Sylows.

Here are some valuable conceptual statements on pro-` groups.

(1.7a) Tate: A closed subgroup of a pro-free pro-` group is a pro-free (pro-`)

group, and a pro-` group is projective if and only if it is pro-free, [FrJ86,

Cor. 22.7.6 and Cor. 22.7.7]2.
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(1.7b) Schreier: For F̃t, pro-free on t generators, a constructive procedure finds

1+n(t−1) independent pro-free generators of a finite index subgroup U ≤
F̃t with (F̃t : U) = n [FrJ86, §17.5]2.

(1.7c) The expression 1+n(t−1) from (1.7b) is a bound on the rank of any sub-

group of index n in a group of rank t.

Problem 1.22. Use Lem. 1.24 as a characterization of a pro-` group to show

(1.7a). Use (1.7b) to show that the projective cover ψ̃G : G̃ → G cannot be a pro-

free group if at least two primes divide |G|. Hint: A profree group cannot be the

product of 2 or more `-Sylows.

Definition 1.23. For each prime `||G|, there is a profinite Frattini cover

`ψ̃G : `G̃→ G with ker(`ψ̃G) profree, pro-`, of finite rank, rk( `G̃).

Especially, consider these points running over all such `.

(1.8a) G̃ is projective, and equal to the fiber product over G of the `G̃ s (§1.3).

(1.8b) ψ̃ is the minimal (profinite) cover of G with all its `-Sylows projective,

and so pro-free pro-` finitely generated groups (Prop. 1.30).

1.4. Characteristic quotients of ψ̃G. We will see that Frattini covers are

determined by statements about `-Sylows. Although extensions given by Frattini

covers do not necessarily have abelian kernels, this is compatible with similar state-

ments about Hn(G,A) being determined by statements about the `-Sylows of G

(see Rem. 1.25).

Lemma 1.24. For any pro-` group, P , of finite rank, its Frattini subgroup is

〈[P, P ], P `〉 def
= frP . That is,

P/frP = (Z/`)rk(P ) is the smallest quotient of P

presenting P as a Frattini cover [FrJ86, Lem. 22.7.4]2.

Proof. Again, the Sylow theorems: Maximal subgroups of pro-` groups are

normal subgroups of index `. Now use that a composition of Frattini covers is

Frattini. Therefore, the Frattini quotient P/Φ(P ) must be (Z/`)m, since it will be

an ` group and the minimal Frattini cover.

The quotient is abelian. So, that puts the commutator subgroup and all ` powers

in Φ(P ). As P → P/Φ(P ) is a Frattini cover, the two groups have the same rank. �

Remark 1.25. [Br82, Thm. III. 10.3] notably relates the cohomology of G and

restrictions of the cohomology to the `-Sylows of G. For P an `-Sylow of finite group

G, restriction to P maps the `-primary part of Hn(G,A) isomorphically to the G

invariant elements of Hn(P,A). The rub is that saying the conjugation action of G
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is invariant is tricky as the chains for Hn(P,A) are defined by functions in HomZ[H],

not HomZ[G] (see §1.1.1).

1.4.1. Characteristic quotient notation. As usual, frP is the closed subgroup of

P generated by ` powers and commutators of P . Recover a cofinal family of finite

quotients of `G̃ through the Frattini kernel of the natural map

1→ ker0 → `G̃→ G→ 1.

This produces the characteristic sequences of `G̃:

(1.9)
Kernels: `KG : ker0 > fr ker0

def
= ker1 ≥ · · · ≥ fr kerk−1

def
= kerk . . .

Frattini Covers: {`GG : k`G
def
= `G̃/ kerk → G}k≥0.

Generally we use the ˜ to indicate a Frattini tail is present. The projective limit of

the k
`G s is `G̃. Sometimes we denote kerk / kerk′ by `Mk,k′ or Mk,k′ for k′ ≥ k.

There is a natural Z/`[ k`G] structure on `Mk,k+1. Lift g ∈ k
`G to

(1.10)
g̃ ∈ k+1

` G and act by conjugation m 7→ g̃−1mg̃ for m ∈ `Mk,k+1.

Especially, `MG
def
= `M0,1 is the characteristic Z/`[G] module.

As `Mk,k+1 is a(n abelian) module, the (1.10) action of g̃ is independent of its lift.

Example 1.26 (Prelude to a normal `-Sylow). The easiest cases of (1.9) with

an `-perfect G are slight generalizations of D`u : the dihedral group of order 2 · `u

with ` odd. The quotient `G̃/ kerk is D`k+u , and the commutators [kerk, kerk] are

trivial. They won’t be in general.

The obvious generalization is G = 0
`G = Z/`u ×sH, with H an `′ group acting

faithfully through (Z/`u)∗: the `-Sylow of G is normal and cyclic. Then, k
`G is

Z/`u+k ×sH with the H action extending to Z/`u+k. 4

Terms of `KG = {kerk}∞k=0 should reference G unless it is understood. For

example, they may not be characteristic subgroups of `G̃, as in the example for

P = `F̃t (1.7b). Lem. 1.26 characterizes when they are.

Abelianized quotients: We add the abelianizations of the Frattini tails:

`G̃ab(0)

def
= `G̃/[ker0, ker0], abelianization from level 0.

`G̃ab(k0)
def
= `G̃/[kerk0 , kerk0 ], abelianization from level k0.

So long as there can be no confusion, we will denote `G̃ab(0) as `G̃ab
,

(1.11)
the Universal abelianized `-Frattini cover of G:

VG,`
def
= (Z`)ν(G,`) → `G̃ab

→ G, ν(G, `) = dimZ/`(`M0,1).

It is universal for covers of G with abelian `-group as kernel. Akin to (1.9),

consider the sequence

(1.12) `,abGG : { `G̃ab
/`kVG,`

def
= k

`Gab
→ G}k≥0.

8

8Here, with ν(G, `, k0) = dimZ/`(`Mk0,k0+1), is a variant for abelianization from k0:

`,ab(k0)
GG : { `G̃ab(k0)

/`k−k0 (Z`)ν(G,`,k0)
def
= k

`Gab(k0)
→ G}k≥k0 .
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Sometimes, when G is a semidirect product P ×sH, with P an abelian `-Sylow,

we require abelianization right from the top, as in P̃ /[P̃ , P̃ ] ×sH (notation as in

Prop. 1.30). Then we use the notation k
`Gab(−1). In rare cases, P may only be a

subgroup of the `-Sylow:

`‖H| as in the case ` = 2 in §3.2.

That G module `M0,1 in (1.11) replicates as

the kernel of k+1
` G̃

ab
→ k

` G̃ab
.

Exchanging Z/`[G] modules for Z[G] modules changes some crucial details about

the modules. Ch. 6 §1.6 gives guidelines in going mod ` (modular representations)

including that the theory of projective modules in characteristic ` is different.

Remark 1.27 ( `G̃ 6= `G̃ab
). Unless the rank of ker( `G̃ → G) is t = 1, the

only case where the pro-free group of rank t is abelian, `G̃ can never equal `G̃ab
.

This follows from (1.7a) because the `-Sylow of `G̃ is a pro-free pro-` group. From

(1.7b), its finite index subgroup is also.

1.4.2. `G̃ vs `G̃ab
and non-perfect primes. In application to the RIGP, ac-

complishing such regular realizations over certain fields is clearly stronger using the

whole Frattini cover `G̃ → G, as in §6.2. Yet, an important theme in the book is

the pure diophantine difficulty of finding solutions to the RIGP as opitomized by

the Main Conj. 3.1 of MTs, and the cases where that conjecture has been proven.

Here then, understanding the difficulty – as a generalization of results on mod-

ular curves – is strengthened using formulations with the cover `G̃ab
→ G.9 Also,

using `G̃ab
is the right level to make positive comparisons of the OIT generalization

with Serre’s result.

Denote by G
abq

the maximal abelian quotient, G/[G,G] of G. The primes `

dividing |G
abq
| are exactly those for which G is not `-perfect (as in Def. 1.2).

Usually, when using `G̃, we assume G is `-perfect. Alas, we have these opposing

considerations on including `||G
abq
|.

(1.13a) Including such ` without modification won’t give a canonical tower of

Hurwitz spaces from (G,C, `).

(1.13b) Excluding all the `-Frattini extensions associated with (G,C, `) leaves out

towers and RIGP possibilities with classical consequence.

The point of (1.13a) appears in the proof of Prop. 3.4. Examples of (1.13b) – a

process we call folding under the Frattini extensions from `||G
abq
| – are required to

extend Serre’s OIT, for example as explained in Ch. 6 §3.3.3. So, we cannot, quite,

9There are, Ch. 6 §1.7, maximal nilpotent and solvable quotients of G.
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dismiss non-perfect primes, though pure nilpotent groups don’t lend themselves to

the moduli space approach.

1.4.3. Preliminary grasp of `MG. This section is a guide to where we will con-

centrate on using the universal Frattini cover.

Significant quotients of G̃ → G: Prop. 1.30 gives the first constructive aspects

on describing G̃→ G, the case where the `-Sylow of G is normal. These continue as

“` pieces Parts 3 and 4” (resp. Ch. 3 Prop. 2.18 and Ch. 6 Prop. 1.28), to describe,

more deeply, the universal `-Frattini extensions of an `-perfect G.

Definition 1.28 (Universal elementary `-extension). To understand either the

abelianized Universal `-Frattini, or the general `G̃→ G, we start with

`M0,1 = `MG = ker(`ψ̃ab
)/` ker(`ψ̃ab

) as in (1.10).

Proposition 1.29 (` pieces: Part 1). Fiber products of `ψ̃ab
, running over `||G|,

give ψ̃
ab

: G̃/[ker(ψ̃), ker(ψ̃)]→ G.

Using conjugation, as in (1.10), ker(`ψ̃ab
) is naturally a free Z`[G] module ex-

tending the Z/`[G] module structure on `M0,1. Then,

(1.14)
∑
`||G|

dimZ/`(`MG) ≤ 1 + |G|(rank(G)−1).

If H ≤ G is an `′ group, by applying Schur-Zassenhaus, embed H in `G̃ (up to

conjugacy). Then each of the k
`G s inherits a compatible system of coset represen-

tations (meaningfully designated by a single symbol TH).

Proof. Excluding (c) the proposition pieces have all been proved above (or in

their statement). For the exception use (1.7c). This bounds the rank of ker(`ψ̃)/(ker(`ψ̃), ker(`ψ̃)),

which is the same as the rank in the sum in (c). �

Prop. 1.30 gives our first structural statements on G̃.

Proposition 1.30 (` pieces: Part 2). Any automorphism of G extends to G̃,

and for K a characteristic subgroup of G̃, to G̃/K. Denote an `-Sylow of G by P`.

(1.15a) If P` is normal, then with H = G/P`, `G̃ = P̃` ×sH,

P̃` = `F̃rk(P ); ×s indicating H ≤ Aut(G) extends to Aut(G̃).

(1.15b) All such extensions of H to `G̃ differ by a conjugation from `G̃.

Characterize `G̃ (resp. G̃) as the minimal profinite cover G̃∗ → G for which

the (resp. all) `-Sylow(s) of G̃∗ is (resp. are) `-free.

Construction Comments. Consider the first statement with α : G→ G an

automorphism. Then, α ◦ ψ̃G : G̃→ G is a Frattini cover of G

giving a morphism α̃ : G̃→ G̃ for which ψ̃G ◦ α̃ = α ◦ ψ̃G.
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The image of α̃ is a subgroup of the Frattini cover G̃ → G that maps surjectively

to G. Therefore α̃ maps surjectively to G̃. Since G̃ is finitely generated, α̃ is an

isomorphism [FrJ86, Prop. 15.3]1.10 Then, if K is a characteristic normal subgroup

of G̃, by definition the automorphism will preserve it, producing an automorphism

of the quotient of G̃/K.

Now consider (1.15a). Under the hypothesis, if we can extend the action of

H = G/P to P̃ , then we have a Frattini cover with a pro-free pro-` Sylow. So it

must be the `-Frattini cover of G. Let t = rk(P ).

From the above, each h ∈ H extends to an automorphism, h̃, of P̃ = `F̃t, a rank

t cover of P . From Lem. 1.26, the group H̃ generated by {h̃ | h ∈ H} is profinite.

Now apply the profinite Schur-Zassenhaus [FrJ86, Lem. 22.10.1]2; extending from

finite to profinite is an exercise.

Albeit, we can profitably consider that extension’s nature, as in Ex. 1.29, where

P = (Z/`)t in (1.15a). The last paragraph of the proposition generalizes a coho-

mological statement that a Z[G] module M is projective if and only if it passes

the homological criteria that it is `-projective for each prime `||G|. Or use [FrJ86,

§22.4]2 to interpret that directly using elementary abelian `-groups for M . �

Source of algebraic equations: The remaining sections of this chapter introduce

the moduli space pieces from which we produce the towers of spaces that apply

the Frattini constructions. Monodromy action on various objects, including `-adic

representations, comes from a braid group action on Nielsen classes, starting in

§3.1.3. The beginning objects are tagged by a pair (G,C) with C the r generating

conjugacy classes of G we have discussed in the table of contents, and reintroduced

again at the beginning of this chapter.

As previously we simplify by referring to any one of the objects given by, say,

an inner equivalence class of covers of P1
z, by H(G,C). Suppose we only consider

each group G separately and the full collection IG,Q of conjugacy classes C, that

produce spaces {H(G,C)}C∈IG,Q each of which – by the Branch Cycle Lemma –

has its moduli structure defined over Q, so that Q points on any one of them gives

a regular realization of G. Then, specific inspection of these spaces encapsulates the

RIGP(as in §1.1) and we make much of this alone in Ch. 4.

A more complete set of mysteries unfolds, though, when we consider for a pair

(G, `), with a G that is `-perfect, the possibillity of the RIGP applied to the

collection G`
def
= { k`G}∞k=0. For example consider this question.

Question 1.31. What prevents, for a given choice of `, finding an integer r0,

such that these hold for k ≥ 0?

10This would be obvious if G is finite. It becomes so for finitely generated profinite groups be-

cause the intersection of all subgroups of finite index, say n, both of finite index and characteristic.
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(1.16a) There is a collection of classes Ck in k
`G having exactly r0 classes.

(1.16b) There is a pppk ∈ H( k`G,Ck)(Q), giving an RIGP realization of k
`G.

What we find from (1.16) is that for all but a finite number of k, the Ck s consist

only of elements prime `. Therefore, by Schur-Zassenhaus, these can be taken to be

given by r0 classes C in G = 0
`G and, without loss, each class in C lifts uniquely

to a conjugacy class in k
`G to give Ck.

Now, label each of the Ck s as C. Then, the spaces H( k`G,C) form a projective

sequence of covers of Pr \ Dr = Ur. The conclusion of an affirmative answer to

Ques.1.31 is then this Ch. 3 §3.1.

Corollary 1.32. For each k there is a natural absolutely irreducible Q compo-

nent,11 H′k of H( k`G,C) such that the collection forms a projective system. Further,

there is {pppk ∈ H′k(Q)}∞k=0.

There are three points about this.

(1.17a) The Main Conjecture is that the last sentence (about existence of Q

points) is not possible, and for r0 = 4 (or 3), this impossibility is known.

(1.17b) From these H′k we get sequences of spaces whose properties – like having

no Q points at high levels – generalize conjectured and proven properties

of classical spaces that can be attached to a particular G.

(1.17c) In the proven and conjectured properties above, it appears that everything

goes through with k
`G replaced by k

`Gab
.

In (1.17b), the ever present example in this book is of modular curves as at-

tached to the dihedral groups of order 2`. This starts in Ex. 2.7 , continues in Ch.

2 §3.2 and culminates in Ch. 6 §3.2. Directly branching from this are the cases

of spaces of hyperelliptic Jacobians (as in [DFr90] and Ch. 3 §3.2.1), and slightly

more generally, spaces of superelliptic jacobians, as in [MaSh19]. At this time we

don’t know what literature might relate to the spaces for general finite groups G.

Source of `-adic representations: Ultimately, the `-adic representations of the

book’s title stem from,

the Universal abelianized `-Frattini cover of G.

Here is the general rubric for that. Analogous to (1.11) where ν is ν(G, `), consider

any short exact sequence (Z`)ν → `G̃
∗ → G for which `G̃

∗ → G is an `-Frattini

cover. This defines a sequence of groups k
`G
∗
ab

, each a quotient of k
`G
∗
ab

, k ≥ 0.

So long as elements of C have order prime to `, this gives a projective sequence

of covers {H( k`G
∗
ab
,C)}∞k=0. There are natural conditions for these spaces to be

11This includes the moduli properties inherited from H( k`G,C).
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nonempty, to compute their (moduli) definition fields, and to have fine moduli, all

explained in the upcoming sections.

It is the braid action, §3.1.3, on Nielsen classes that gives the monodromy action

on `-adic modules. If ppp∗0 ∈ H( k`G
∗
ab
,C) has definition field K, it is the GK action

on projective sequences of points over ppp∗0 on these spaces that defines the `-adic

representations.12

Thus, we regard the sequence from (1.11) as maximal among those giving `-

adic representations that arise from (G, `,C). Yet, there may be other choices for

`G̃
∗ → G with the necessary `-Frattini property to naturally define Hurwitz space

sequences. The most conspicuous comes from using, instead of G, the normalizer,

N`, in G, of an `-Sylow of G.

Take the sequence (Z`)ν
′ → Ñ` → N` analogous to that for G. The module

action induced from N` to G on (Z`)ν
′

then produces such a G∗. Often, this is a

minimal – and more computable – `-adic representation attached to (G, `,C).

Finally, we don’t neglect that all of these groups k
`G
∗ (with and without the ab

subscript) present challenges to the RIGP and its relation to the IGP.

Guidance on mod ` representations: While the book will gives examples, as

guidance, we thankfully don’t need a general classification of the representations of

G that appear in (1.11). Besides, group theorists and computer scientists consider

that – in detail as one understood collection – this is essentially impossible.

Yet, In our applications, we always need to know nontrivial structural data

on Z/`[G] quotients of `MG. Here we point preliminarily to appropriate results.

The classification of representations of finite groups is a starting model for these

modular representations. In characteristic 0, a module not a direct sum of two

proper submodules (is indecomposable) if it has no proper submodules at all.

That is no longer true for Z/`[G] modules. Indeed, a simple first definition is the

maximal quotient M/Rad(M) of M which is a completely reducible: A direct sum of

irreducible Z/`[G] modules. See Ch. 6 (6.15a) for the names attached to the Loewy

series resulting from this definition. Also, it is standard (and often necessary), for

applying classification theorems of modules, to tensor with an algebraic closure, F̄ ,

of the quotient field F of the base ring. We aren’t classifying anything. Although all

the Frattini extensions of §?? are significant to all our considerations, we restrict

particular examples to more easily recognizable quotients of these.

Ch. 3 Lem. 2.15 and Prop. 2.16 give precise homological characterizations of

`MG. Ch. 3 Prop. 2.18 says, if G is `-perfect and centerless, then the same is true

12The situation without the ab subscript makes sense, but for that we would have to decorate
these actions as nilpotent, since they come from the nilpotent completion of the fundamental group

of the Riemann surface attached to ppp0, something we aren’t quite ready for.
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of all the characteristic `-Frattini quotients k
`G, k ≥ 0. This is crucial to their use

on MT levels, giving all those levels fine moduli space properties.

Quotients, of say ker( 1
`G→ G), on which G acts trivially, give central `-Frattini

extensions. This is a dominant theme in Ch. 3, the book’s center, for detecting

components of Hurwitz spaces. Also for properties of those spaces on their boundary

(cusps). Frattini central extensions have two types, Ext and Comm in §2.1 which

describes both cohomologically. This is in the service of the general lift invariant.

Since the Comm type central extensions are so mysterious, explicating them in

important cases is an additional reason for investigatng the kernel of, say, 1
`G→ G;

Prop. 1.30 is a first result in that direction.

2. Nonsingular sphere covers and Galois closure

The author, here, as in his papers, acts by permutations on the right of the

symbols of the permutation representation. Most of this section and the next applies

to any cover of compact Riemann surfaces. When, however, we start to compute

how covers work, we deal primarily with sphere covers: ϕ : W → P1
z. These ramify

if deg(ϕ) > 1, since the sphere is simply connected.

2.1. Algebraist’s Galois closure. One of the techniques that appears in

considering sphere covers, especially, when they are used in (Hurwitz) families is

to start with covers that aren’t Galois. Then go to their Galois closures. We give

a general construction for the Galois closure of a cover ϕ : W → Z of normal,

quasi-projective (locally closed subspaces of some projective space) varieties, with

W irreducible, over a field K. T

There is no reason to assume ϕ, with deg(ϕ) = n, is étale. Let us, however,

say that it is finite, flat and separable, and indicate the degree (well-defined from

flatness) by n = nϕ. This is what Grothendieck called a (not necessarily étale)

cover. §2.1.1 constructs the Galois closure group, Gϕ, and natural permutation

representation, Tϕ, attached to ϕ, a slight abstraction of [BFr02, §3.1.3].

2.1.1. Fiber product construction. Take the set theoretic fiber product of the

cover ϕ, n times:

(1.18) W (n)
ϕ = {(w1, . . . , wn) ∈Wn | ϕ(w1) = · · · = ϕ(wn)}.

There are components we don’t want: Those where the whole component has n-

tuples with two entries (or more) that are equal. That collection, denoted ∆n, is

called the fat diagonal.

Now remove ∆n, referring to the result as W 0
ϕ. Then, Sn still acts on it by per-

muting coordinates. Normalization of a projective variety, X, in a finite extension,
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F , of its field of functions K(X), is a topic found in [Mu66, p. 396-397].13 We have

used it often, say, as in [Fr77, p. 36] akin to as in the Comments of Prop. 3.5, to

generalize what is below to form families of Galois closures of covers.

For a complex analytic space, X, the main category in this book, there is a

natural local definition of normalization. At each ppp ∈ X, there is ring (integral

domain), Rppp, of local holomorphic functions (precisely the meaning of an analytic

space) about ppp. That right has a quotient field Kppp, and normal means that at each

point the integral closure of Rppp in Kppp is just Rppp. With this we can also discuss

normalization of X.

Assuming X has a single component, we must consider that its (function) field

of meromophic function may actually have no nonconstant meromorphic functions.

By contrast, projective algebraic varieties have a function field which determines

them up to birational morphism. Here are some other points.

(1.19a) There is a natural algebraic map from the normalization, X̃F of X in F

to X (defined on geometric points): ψ̃F : X̃F → X.

(1.19b) We call X normal if ψ̃K(X) is an isomorphism.

(1.19c) If X is normal and projective, then so is X̃F .

(1.19d) If X is normal, it is nonsingular in codimension 1.

We start off Ch. 2 explaining precisely why we need normalization and projective

varieties, rather than just complex analytic spaces.

Back to W 0
ϕ, (1.18) with the fat diagonal removed.

(1.20a) Normalize the result, W 0
ϕ, in the function field of each component. You

don’t have to do this if ϕ is étale.

(1.20b) Denote any irreducible K-component of W 0
ϕ, by ϕ̂ : Ŵ → Z (as a cover).

From normalization, (1.19d), all components are disjoint.

See §1.1.1 for the notation we will use for permutation representations. Then, ϕ̂ is

a Galois closure of ϕ. (See §1.4.1 for a little categorical glitch if it should turn out

that Ŵ is singular.) §3.2 illustrates Lem. 2.1 in detail in our running example on

dihedral groups. For H ′ ≤ H, denote the normalizer of H ′ in H by NH(H ′).

2.1.2. The canonical permutation representation. Classical problems didn’t fea-

ture the Galois closure of a cover. Simple versions of the Inverse Galois problem

emphasized it only. The connection between the two is the canonical permutation

representation.

Lemma 2.1. The group, Gϕ ≤ Sn, of ϕ̂, appears as the elements of Sn that

leave Ŵ fixed. It is a Galois cover because Gϕ acts transitively on each fiber over

13Actually, in either [H77] or [Mu66], fields of definition are almost always algebraically

closed, compatible with the interests of those authors.
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Z. By restriction Ŵ has a projection onto each copy of W in the fiber product. Say,

project on the 1st.

That cover is also Galois, with group G(Tϕ, 1). Then, Tϕ is the permutation

representation of Gϕ on the cosets of G(Tϕ, 1), where we can take 1 to correspond

to the coset of the group element 1.

The collection of components of W 0
ϕ with the exact same Gϕ ≤ Sn correspond

to the elements of the quotient NSn(Gϕ)/G.

Proof. Since Sn is transitive on the fibers of W 0
ϕ → Z, so too will be Gϕ as

the elements leaving Ŵ fixed, showing the ϕ̂ is Galois. The rest of the first two

paragraphs is already explained from this.

Now suppose Ŵ ′ is another component of W 0
ϕ, and the elements in Sn that

leave it fixed form the group G′ϕ. From transitivity of Sn on the components, there

is g ∈ Sn that maps Ŵϕ → Ŵ ′ϕ. Then, gG′ϕg
−1 also consists of elements in Sn that

leave Ŵϕ fixed (note: we are acting as we mostly do on the right). If we assume

that G′ϕ = Gϕ, then this implies g ∈ NSn(Gϕ), This is reversible and gives the last

paragraph of the lemma. �

The attached permutation representation: The significance of the following

lemma is that it ties together the fundamental condition called fine moduli (see

§3) for covers where equivalence is called absolute to that for covers where equiva-

lence is called inner.

Definition 2.2. For a pair (G,T ) where T is transitive and faithful, consider

the normalizer, NG(G(T, 1)), of G(T, 1) in G.

Call (G,T ) self-normalizing if NG(G(T, 1)) = G(T, 1).

Consider CenT (G) = {h ∈ Sn | hgh−1, ∀g ∈ G}.

Lemma 2.3. Then, CenT (G) = NG(G(T, 1))/G(T, 1) is isomorphic to the au-

tomorphisms of W that commute with ϕ. If G is self-normalizing, then ϕ has no

automorphisms (analytic isomorphisms that commute with ϕ). Further, G is cen-

terless. That the representation is faithful means ∩ni=1G(T, i) is trivial.

A decomposition of ϕ : W → Z into a chain of (normal) covers

ϕ1 : W →W2
ϕ2−→Z

corresponds to a subgroup G(T, 1) ≤ H ≤ G, with the degrees of ϕi, i = 1, 2,

respectively equal to (G : H) and (H : G(T, 1).

Proof. The interpretation of the automorphisms of ϕ as NG(T,1)(G)/G(T, 1)

is [Fr77, Lem. 2.1]. Then, [Fr77, Lem. 2.2] identifies this group with the complete
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centralizer of G in Sn. Since we make use of it often, here is the argument that says

self-normalizing implies G is centerless.

Suppose g ∈ G is in the center. Then, gG(T, 1)g−1 = G(T, 1) and so g ∈ G(T, 1).

Since T is transitive, for each i ∈ {1, . . . , n}, there exists an h ∈ G, for which

(1)T (h) = i. Then, h−1gh = g takes i to i. Since this holds for all i, and T is

faithful, g is trivial.

The correspondence between covers between W and Z with subgroups between

G(T1, 1) and G is a special case of the Galois correspondence. �

Reasonably we ask: What is the pair (Gϕ, Tϕ) given ϕ? A good answer requires

significant labels for such pairs. Considering our limited understanding of finite

groups, we must separate such pairs using other concepts. See Ch. 6 §1.1, especially

compare the cases when ϕ does not or does decompose, as ϕ2◦ϕ1 with deg(ϕi) > 1.

2.1.3. Group of an equation a la Galois. Suppose f(y) is a degree n, separable

and irreducible, polynomial over a field K. For simplicity on a critical point, we will

assume – somehow – you have managed to find these roots as particular complex

numbers in C. We list them as {α1, . . . , αn}. Then, the sought for Galois group

appears as the group of permutations of {αi}ni=1 given as field automorphisms of

the extension K̂f = K(α1, . . . , αn)/K. That, however, leaves a mystery: like, how

do you detect field automorphisms?

The vector space Vk = {
∑n−1
j=0 mjα

j
k} equals the field K(αk). Further, the

substitution map sk,k′ : αk 7→ αk′ gives a natural field isomorphism Vk → Vk′ .

Alas, since Vk′ is not necessarily equal to Vk, this may not be an automorphism,

and Vk is not K̂f . 14

Our comments below are basic Galois theory, Yet, like a foreign language learned

after childhood, they are easily forgotten. Here are reminders.

Apply to Spec(K[y]/(f(y))→ Spec(K) the n-fold fiber product construction of

§2.1.1. At the level of taking the tensor product of rings, associate a direct summand

of the ring tensor product, to the Galois closure. Since, however, that’s not the way

it is done in algebra courses, consider one classical construction, of a polynomial

f̂(y), for which any one of its roots gives Kf .15 It goes, over K, like this.

Form any linear combination Laaa
def
= Laaa(ααα)

def
=
∑n
i=1 aiαi of the roots of f(y),

ai ∈ K. For τ ∈ Sn use the notation Laaa((ααα)τ)
def
=
∑n
i=1 aiα(i)τ .

(1.21a) Choose aaa so that the Laaa((ααα)τ), for τ ∈ Sn, are distinct.

(1.21b) Choose f̂ to be an irreducible factor (over K) of
∏
τ∈Sn(y − Laaa((ααα)τ)).

Comments on (1.21a): Having f an irreducible polynomial K implies their quo-

tient rings are fields. Since we don’t know {α1, . . . , αn}, we cannot a priori pick

14Indeed, for k 6= k′, Vk ∩ Vk′ = K, unless RETURNM
15Perhaps due to van der Waerden, but compatible with Galois.
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those coefficients aaa = a1, . . . , an, though their existence is assured by avoiding val-

ues aaa ∈ Kn that lie on the union of the hyperplanes{
(x1, . . . , xn}

def
= xxx ∈ Cn | Lxxx((ααα)τ)−Lxxx((ααα)τ ′), τ, τ ′ ∈ Sn, τ 6= τ ′

}
.

Alas, it is hard to detect when a particular permutation is a field automorphism.

So, it is hard to compute GP . A more positive approach uses the case above:

(1.22) replacing α1 by Laaa, a single field generator of K(α1, . . . , αn).

The effect of an automorphism τ on K(α1, . . . , αn), is determined by Laaa 7→ L(aaa)τ ,

one of the conjugates of Laaa: zeros of the irreducible polynomial for Laaa over K–whose

degree we take to be N .

Also, each αk equals Ak(Laaa), k = 1, . . . , n, with Ak ∈ K[y], a polynomial of

degree ≤ N−1. The effect of any Laaa 7→ L(aaa)τ is given by this substitution in the

Ak s. Thus, the elements in GP ≤ Sn correspond to these substitutions: GP consists

of {τ1, . . . , τN}.

Comments on (1.21b): You can avoid making any choices for aaa by using the

variables xxx above, and forming the product

f∗xxx(y) =
∏
τ∈Sn

(
y−

n∑
i=1

α((i)τxi
)
∈ K[xxx].

Then, find an irreducible factor, f̂xxx(y), of it in K[xxx].

The group Gf of f is {τ ∈ Sn | f̂(xxx)τ (y) identically equals F̂xxx(y)}.

Any of these definitions work. The geometric one of the previous section – with only

one significant choice; picking a connected component or irreducible factor – works

especially well for understanding using components of Hurwitz spaces as moduli for

variants on the RIGP.

Remark 2.4. In a tasteful, rather nice book, after noting that Galois introduced

the word and full concept of (finite) group (quoting [Gal31]), [St10, p. 391] says:

Galois produced [the group, GE , of an equation called E] as the

permutation of roots that leave rational functions of the coeffi-

cients unaltered . . . .

A typo or a misunderstanding, by me or by him? Later, [St10, p. 413] says

We may be fairly sure that whatever Galois did was later su-

perceded by Riemann.

Like many I am totally in the thrall of Riemann – as in [Fr02b]. Yet, you won’t

find in Riemann, Galois’s intuition about finite groups. Yes, Galois made mistakes.

Still, his insight was specific, tasteful and hardly naive, much less for a 20 year old,

in his selection of problems.
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Still, I found Stillwell’s interpretation of Galois’ death, especially and thought-

fully included Galois despondency over “the suicide of his father, and Galois’s own

self-destructive tendencies.” I have commented similarly on [Rig96], for example

in [Fr90b, Ch. 2, §10.3], though regarding it as a moment of despondency during

the Republican time in France that severely depressed many.

2.2. P1
z covers and Nielsen classes. We return to ϕ : W → P1

z, sphere

covers. Call the images, z′, of points of ϕ that ramify branch points. Such z′ are

places on the z-sphere where there are < n = deg(ϕ) = nϕ distinct x′ s in ϕ−1(z′).

There are just finitely many such (distinct) points, {z′1, . . . , z′r} = zzz′. We often use

r = 4, the first value of r significantly using braids (§3.1.1).

2.2.1. Using a fundamental group. Denote the fundamental group of

P1
z \ zzz′

def
= Uzzz′ based at z0 ∈ Uzzz′ by π(Uzzz′ , z0).

As always, a (connected) cover, say, the restriction of ϕ to the points of W over Uzzz

of degree n is given by a (transitive) permutation representation – homomorphism

of π(Uzzz′ , z0) → Sn by acting on the fiber, www′ = {w′1, . . . , w′n}, over z0 using the

unique path-lifting property.

Here, though, we are more explicit and careful about choices. As a preliminary

we can profitably use the definition of a z′i-loop: That would be a path based at z0,

that is homotopic to δi ◦ γ̄i ◦ δ−1
i on Uzzz′ with δi a simple path from z0 to a tiny disk

neighborhood Di of z′i (on Uzzz′) ending at bi, and γ̄i a (clockwise) circle around Di

starting and ending at bi. Fig. 1 compares two loops around z′i.

Figure 1. Comparing two loops around z′(i)

↙ γ̄i,2

γ̄i,1 ↗

↙ γ̄i,2 ← δ′i
•bi,1

δi,2 →

← δi,1

z0 z0

z′i
bi,2ρ↗

z′i
bi,2

z′i−1

bi,1

z′i−1

z′i−2 z′i−2

z′i+1 z′i+1

Lemma 2.5 (Conjugate loops). The loop δi,j ◦ γ̄i,j ◦ δ−1
i,j , j = 1, 2, are conjugate

in the fundamental group π1(Uzzz′ , z0).16

16For those who learned about tame ramification groups of Dedekind domain extensions, it
may come as a surprise that Lem. 2.5 picks out a conjugacy class, rather than just a generator.

That comes from our choice of a clockwise orientation in our loops.
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Proof. With no loss, up to the homotopy classes of the paths in question, we

may assume the disks that γi,j , j = 1, 2 surround lie one inside the other, with

an annulus between them. As in the figure on the right, we have drawn a (simple)

path, ρ within that annulus between bi,1 and bi,2, so that the path δ′i is δi,1 ◦ ρ.

If we conjugate δi,1 ◦ γ̄i,1 ◦ δ−1
i,1 by δi,1 ◦ ρ ◦ δ−1

i,2 the result is

δi,2 ◦ ρ ◦ δ−1
i,1 ◦ δi,1 ◦ γ̄i,1 ◦ δ

−1
i,1 ◦ δi,1 ◦ ρ

−1 ◦ δ−1
i,2

which is easily seen to be homotopic to δi,2 ◦ γ̄i,2 ◦ δ−1
i,2 . That proves the lemma. �

Then Classical generators for the fundamental group of P1
z \ zzz′

def
= Uzzz′ based at

z0 appear in many places. In words: They are (piecewise simplicial) closed paths,

{P1, . . . , Pr} = P, representing, respectively,

z′i − loops, i = 1, . . . , r, in π1(Uzzz′ , z0).

Further, other than at z0 we may assume they pairwise intersect nowhere else.

Given P, there is one significant ordering: That these paths emanate from z0 in

going clockwise around a suitably small circle about z0.

Nielsen classes: For convenience in listing properties of covers with branch points

zzz′ relative to these paths, we assume the order of emanation of the z′i-loops is given

by their subscripts 1, . . . , r. For a cover ϕ : W → P1
z with z0 and zzz′ as above, label

the points on W above z0 as www′ = {w′1, . . . , w′n}.17

(1.23a) Homotopy classes of P generate π1(Uzzz′ , z0) freely with one relation: P1 · · ·Pr
is homotopic to 1 (order given above).

(1.23b) Unique path lifting : Pi 7→ gi ∈ Sn by the rule, running over w′j , the unique

lift of Pi starting at w′j ends at w′k = w′(j)gi , i = 1, . . . , r.

(1.23c) branch cycles (g1, . . . , gr) = ggg satisfy Nielsen Class properties:

• Generation: the group 〈g1, . . . , gr〉 = Gϕ is the geometric monodromy

(Galois closure) group of ϕ.

• Product-one: g1 · · · gr = 1.

• Conjugacy classes: Independent of P, {gi| i = 1, . . . , r} define conju-

gacy classes C = {C1, . . . ,Cr} in Gϕ.

The path notation of Fig. 2 is compatible with that of Fig. 1.
Problem 2.6. Use Ch. 2 Prob. 2.3 to create classical generators from any base

point z0 for any given distinct points zzz′ ∈ P1
z.

2.2.2. First Nielsen class example. Excluding stipulating the equivalence † we

intend to use on covers – several appear – Ni(G,C)† is just a listing of the covers

of the sphere satisfying the conditions of (1.23c) with attached (G,C, T ) branched

17(1.23) is done in great detail in [Fr90b, Ch. 4] starting from [Ahl79, §1.1–1.3]. [Vo96]
use idealized classical generators, leaving out a crucial point: The braid group is transitive on all

possible classical generators, as used in the conclusions of (1.29).
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Figure 2. Example classical generators based at z0

•
•
•

••
•

z0

z′1

z′i

z′r

•

•

•

•

γ̄i ↗
γ̄r↘

γ̄0
↗

γ̄1↘

δ1
↗

δi
↗ ←δr

b1
↗

bi
↗

←br

•

•

•

a1
↗

ai↘

←ar
•

•

•

precisely at zzz′. Of course, T depends on how we label points in www′. In §3 our † will

be more explicit about that dependence. RET (Riemann’s Existence Theorem) says

that giving covers with data attached to (G,C, T,zzz′) is the same as giving r-tuples

ggg as in (1.23c). That is, the sets are the same, though the associations between

them depend on the choice of classical generators.

Comments on Prop. 3.5 say more on RET and identifying 〈g1, . . . , gr〉 with

the group of the Galois closure of ϕ : W → P1
z. We have just shown that the

identification requires recognizing that W has a function field.

A cover doesn’t include an ordering its branch points. Adding such an ordering

would destroy the applications to the RIGP. This makes sense of saying a cover is

in the Nielsen class Ni(G,C, T ) (or Ni(G,C)†).

In some ways the dihedral group, D`k+1 = Z/`k+1×s{±1}, of order 2 ·`k+1 with

` (for now) an odd prime, is an easy group. Still, it will be an extremely important

running example for which we consider its elements, and those of related groups,

as 2× 2 matrices. We have the choice, as in Def. 1.6, to consider 〈±1〉 as acting on

the left (resp. right). For example, with C2 the conjugacy class of
( −1 0

0 1

)
, we

would regard C2 as the collection

Left action:{
( −1 a

0 1

)
| a ∈ Z/`k+1}

Right action:{
( −1 0

a 1

)
| a ∈ Z/`k+1}.

Then, for the standard permutation representation T : D`k+1 → S`k+1 , with

letters b ∈ Z/`k+1, we would respectively have g ∈ D`k+1 act by

Left action: g =
( −1 a

0 1

)
:
(
b
1

)
7→
(
a−b

1

)
Right action: g =

( −1 0
a 1

)
: (b 1) 7→ (a−b 1),

as expected by extending matrix multiplication to vectors.
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Example 2.7 (An “Elementary” example). As above, using the left action,

let Nk be the normalizer in S`k+1 of D`k+1 and consider absolute Nielsen classes

Ni(D`k+1 ,C24 , T )abs = Niabs
k . Associate(( −1 a1

0 1

)
,
( −1 a2

0 1

)
,
( −1 a3

0 1

)
,
( −1 a4

0 1

))
to (a1, a2, a3, a4) ∈ (Z/`k+1)4 modulo Nk.

Count these using representatives with these properties:

(1.24a) a1 = 0, a2−a3+a4 = 0; and

(1.24b) a2 = 1 or ` | a2 and a3 = 1.

Then: |Niabs
k | = `k+1 + `k. Modding out only by D`k+1 — instead of Nk — gives

|Niink | = (`k+1 + `k)ϕ(`k+1)/2 with ϕ the Euler ϕ-function.

Renormalize: Use a2−a3 = a′`u with (a′, `) = 1 in place of a2 = 1; conjugate by(
a′ 0
0 1

)
to take a′ = 1. This allows further conjugation with α ≡ 1 mod `k+1−u.

This example continues in Ch. 2 §3.2. Ch. 6 §3.2 identifies spaces of covers (§3)

in dihedral Nielsen classes, when C = C24 , with modular curves. 4

2.3. Classical visions of RET. Since Riemann died in 1866, there has been

a long history of accustoming to RET, much of it evidence of different generations

learning it anew, since there is no obvious place in the (especially undergraduate)

curriculum where it belongs. In the short subsections §2.3.1 – field theoretic – and

§2.3.2 – picture centric – I engage that history. We would never get anywhere if we

only concentrated on the elementary questions they raise, though at least the first

of these sections deserves more treatment.

2.3.1. Field version of RET. Suppose L/C(z) is a finite extension, given by

an irreducible polynomial FL(z, w), of degree n in w. For each z′ (branch point or

not), we may find n zeros of FL in the field of

Puiseux expansions Puz′ = ∪∞k=1C(((z − z′)1/k)).

That is, we have an embedding ψz′ : L̂→ Puz′ of the Galois closure, L̂, of L/C(z)

in Puz′ . Such a ψz′ is defined up to composing with elements of G(L̂/C(z).

Elementary statement of RET: Further, there is a canonical automorphism of

Puz′ (fixed on the Laurent series, C((z − z′))) in z − z′) given by

σz′ : (z − z′)1/k 7→ e
2πi
k (z − z′)1/k for all k ≥ 1.

Only for z′ among the branch points zzzL will the restriction to L̂ be nontrivial. For

each branch point, zi, that restriction gives an element gzi in G(L̂/C(z)), thereby,

as previously, defining a conjugacy class Ci in this group.

Proposition 2.8. The Nielsen class conditions imply for some choices of ψzi ,

1, . . . , r, the ggg = {gz1 , . . . , gzr} satisfy product-one and generation.
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Further, they imply the inverse problem. Assume any distinct zzz and elements ggg

that satisfy product-one that generate a (finite) group G, with a transitive permu-

tation representation of degree n. Then there is L/C(z) as above producing ggg.

As ggg defines the genus of the unique Riemann surface associated to L from the

RH formula (1.37). So, there is a natural collection of appropriate questions that

go under the following heading.

Question 2.9. Is any of this easy, or doable explicitly, or without using the

fundamental group of the r-punctured sphere (a la Fig. 2)?

Fiber products of genus 0 covers: For example, consider these questions.

(1.25a) Can we answer Quest. 2.9 affirmatively for genus 0 (given by a rational

function in w) extensions?

(1.25b) if the answer is yes, to (1.25a) can we use fiber products of genus 0 exten-

sions to answer yes to all extensions.

Even Riemann relied on fiber products of genus 0 covers – the description of

hyperelliptic curves, and finding nondegenerate odd half-canonical classes (§1.3 – to

conclude one of his most famous theorems. In that he gave a formula for finding all

functions on any Riemann surface of genus g as a ratio of translates of a particular

θ function formed from that half-canonical class. This generalized Abel’s analogous

theorem on elliptic curves, the only genus where half-canonical classes could be

confused with 2-division points, and where there is a unique odd half-canonical

class. This Abel Theorem. not discussed in great detail in [Fr02b], though it is the

concentration point of most treatises that do mention Abel’s Theorems.18

Proposition 2.10. Even if the answer to (1.25a) is affirmative, the answer to

(1.25b) is no.19

Proof. Suppose a cover ϕ : W → P1
z has monodromy group one of the simple

groups that does not appear as a composition factor of a genus 0 cover of P1
z.

Answering (1.25b) affirmatively means that the Galois closure of a given cover, say

ϕ, appears as a quotient of the fiber products of the Galois closures of genus zero

covers. In that case, however, the group Gϕ would have each composition factor

appear as a composition factor of the Galois closure of one of those genus 0 covers.

From, however, the genus 0 problem [Fr05b, §7.2.1], only finitely many simple

groups – outside of cyclic and alternating groups – appear as composition factors

of monodromy of genus 0 covers.20 Yet, every group appears as the monodromy of

18It is in the subjects of [Fr90b, §7.2] and [Fr10, §6] in a style related to that of Riemann.
19see the proof for the meaning of this.
20This is the result on the genus 0 problem as originally formulated by the author and

J. Thompson, but R. Guralnicks stronger conjectures on the specific monodromy of primitive

genus 0 covers, and also general genus, have been proven.
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P1
z cover from RET, including those simple groups that can’t be realized from the

genus 0 problem. �

Remark 2.11. There is a simplification in trying to construct rational function

covers, for – by Luroth’s Theorem – they are pure transcendental over some coeffi-

cient field. In particular cases, they have been so described as covers of P1
z following

their appearance in families of Hurwitz spaces. For example, as in [CoCa99], which

constructs the polynomial covers – called Davenport pairs – using a computer pro-

gram. Still, the group theory and RET as in [Fr80] lie behind their solution.

Another example – for regularly realizing Spinn – is those covers in the Nielsen

classes denoted Ni(An,C3n−1), n ≥ 5 and odd in Ch. 3 Ex. 2.9. Here – [Me90],

with an exposition in [Se92, §9.3], and an earlier attempt for n ≡ 1 mod 8 in

[Vi85] – the construction is only explicit for ϕ : X → P1
z in the Nielsen class when

there is z′ ∈ P1
z(Q) with ϕ−1(z′) consisting of Q geometric points.

2.3.2. Cuts and impossible pictures. There has been a tradition for drawing

“3D pictures” – in R3 – of covers of the sphere, by functions even easier than those

given by in Ex. 2.7, for covers with just 3 branch points (or even 2, rather than 3).

I have asked two questions:

(1.26a) Are the pictures meaningful, usefully conveying properties of the covers?

(1.26b) Do they turn out to work in more serious examples?

Projecting from C2 to R3: Consider the problem of representing covers by pictures

in R3, with an attempt to give a description of the ramified cover f : Uw:0,∞ →
Uz:0,∞ by w 7→ wn in Fig. 3. Points of Uw:0,∞ over z ∈ Uz:0,∞ correspond on the

graph of f to C× C points on the line with constant second coordinate z.

You can’t draw pictures in C × C = R4. So first year complex variables texts

try to represent Uw:0,∞ and Uz:0,∞ as subsets of R3. In Fig. 3, a traditional picture

representing the nth power map as if it were the projection on a real coordinate.

Let (x1, x2, x3) be coordinates for R3, and let x3 = 0 represent Uz:0,∞ sitting in

R3\{(0, 0, 0)}. Pictures try to represent an annulus around the origin in Uw:0,∞ as a

set M in R3 over an annulus D0 in Uz:0,∞. Then, points of M over (x1, x2, 0) ∈ D0

are on the line in R3 whose points have first coordinates x1 and x2. That is, f

appears as a coordinate projection.

A lift of γ (a clockwise circle, compatible with choices for classical generators)

is γ̃ going 1
n of the way around a clockwise circle. The associated permutation is

an n-cycle of Sn representing that γ̃ goes from the lift y′ = 21/n of γ(0) = 2 to

y′′ = 2
1
ne
−2πi
n , the point on γ̃ lying 1

n of the way around from y′.

There is, however, no topological subspace M of R3 that can work! If there

were, then a cylinder perpendicular to the plane x3 = 0, with (0, 0, 0) on its axis,



2. NONSINGULAR SPHERE COVERS AND GALOIS CLOSURE 47

Figure 3. An n-cycle of path liftings

Cz↘

2
1
ne
−2πi
n

↘
•↖ γ̃

←− γ

Cw
x

2
1
n→• •←3

1
n 2→• •←3

would intersect M in a simple closed path winding n times around the cylinder.

Represent such a path by γ : [0, 1]→ R3 where t ∈ [0, 1] maps to

γ(t) = (cos(2πnt), sin(2πnt), x3(2πnt)) and x3(2πn) = x3(0).

Conclude: w(t) = x3(2πnt) − x3(2πnt + 2π) is 0 for some value of t between 0

and (n− 1)/n. So, the path isn’t simple. The author has never seen such a picture

attempt in the literature for any noncyclic cover, much less for more demanding

nonsolvable groups.

A word on “cuts”: Even the case when the degree n is 2, and we are considering

ϕ : W → P1
z, where W has a presentation as a sphere with g handles in R3,

presenting the map ϕ by a picture in R3 can be confusing. Still, something akin to

that appears in many books – for example, [Con78, p. 243] – and it is analyzed

in [Fr90b, Ch. 2, § 2.4.1]. That picture includes all the usual elements, especially

the cuts. The discussion there, concentrates on the Fig. 7, there: two discs snipped

along cuts along their negative real axes, with the left cut on one jointed to the

right cut on the other, etc. Then, paths around an origin in the picture jump from

one cut disk to the other, in a way that represents continuity symbolically.

From [Ne81], we learn that Gauss introduced Riemann to cuts. Their value is

that they suggest how a combination of symbols and pictures can justify the topol-

ogy. This establishes the idea behind the cuts is that “similar” covers – meaning

they are in the same Nielsen class – have a locally constant structure. Yet, that

symbolic case is a hyperelliptic curve covering P1
z.

While we don’t develop those cuts here in detail, §3.1.1 – under the rubric of

“dragging a cover by its branch points” – shows where they get used precisely in

the description of the Hurwitz monodromy group, Hr. §3 takes the approach that

a Nielsen class representing a space of covers, that deform through changing their

branch points, can leap us over an entanglement with impossibly complicated paths

on particular Riemann surface covers.
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There are so many problems that demand going beyond hyperelliptic covers.

One standout, Prob. 3.8 however, dominates the applications in this book.

3. Hurwitz spaces parametrize covers in Ni(G,C)†

We now discuss the space of all covers in a given Nielsen class. Ch. 5 §3 will

explicitly illustrate each of Prop. 3.1, 3.2 and 3.5 on the main example of this paper.

That is, we illustrate computing with braids, and Nielsen class elements. That does

not mean we will write out equations for the spaces and covers.

3.1. Parameters for covers. A (Hurwitz) space whose points parametrize

covers in a particular Nielsen class of r classes appears as a cover of a configuration

space. This is r unordered branch points minus the locus where two come together:

(1.27) Ur = projective r-space Pr, minus its discriminant locus, Dr.

Take zzz0 to be a basepoint of Ur, and

denote π1(Ur, zzz0), the Hurwitz monodromy group, by Hr.

3.1.1. Dragging a cover. Here is how to think of forming Hurwitz spaces, a

process we refer to as dragging a cover by its branch points.

Start with ϕ0 : W0 → P1
z, a cover with branch points zzz0, classical generators P0

and (branch cycles) ggg0 ∈ Ni(G,C). Drag the branch points along any path B in Ur,

starting at zzz0 and ending at zzz1. Then, deform the classical generators along that

path to P1. With no further choices, we may canonically form a cover ϕt : Wt → P1
z

with respect to the same ggg0 along the path indicated by the parameter.

Classical generators → identifying branch cycles: This produces a collection

of P1
z covers of cardinality |Ni(G,C)†| over every point of Ur, forcing upon us a

decision. Should B be a closed path, representing an element of π(Ur, zzz0), how do

we identify branch cycles ggg1 for the cover ϕ1 : W1 → P1
z lying at the end of the

path, relative to the original classical generators P0?

(1.28) That is, what will we choose for †?

Here are key points going back to [Fr77, §4].

(1.29a) Endpoint of the Drag: A cover at the end of B is still in Ni(G,C)†. It

depends only on the homotopy class of B with its ends fixed.

(1.29b) Branch cycle finale: For B closed, a braid, qB ∈ Hr (§2) applied to ggg0

gives ggg1 = (ggg0)qB .

(1.29c) Minimal equivalence: For each g ∈ G, some braid qg conjugates entries by

g; see Ch. 2 Prob. 2.2: (ggg0)q = g(ggg0)g−1.

(1.29d) Hr orbits: (Irreducible) components of spaces of covers in Ni(G,C)† cor-

respond to Hr orbits.
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Ch. 2 §2.1.2 gives explicit paths on Ur, and their effect as braids. Whatever the

problem application, we must be able to identify the Galois closure of the cover.

The key ambiguity is in labeling www′ = {w′1, . . . , w′n}, points lying over z0. Changing

that labeling changes T : G → Sn. A slightly subtler change comes from changing

z′0. There is a distinction between them.

Changing z′0 to z∗0 is affected by rewriting the zi-loops as

(1.30) λ∗ ◦ λ ◦ ρ ◦ λ−1 ◦ (λ∗)−1, with λ∗ a path from z∗0 to z0.

3.1.2. Absolute vs Inner equivalence. Assume ϕ0 : W0 → P1
z is a cover, branched

at zzz0, with assigned branch cycles using a classical set of generators as above. Ap-

plications dictate under what circumstances we will identify covers ϕi : Wi → P1
z,

i = 0, 1, branched at zzz0, obtained from dragging a given cover ϕ : W → P1
z around

two (different) closed paths in Ur using the dragging-branch-points principle.

Prop. 3.1 is a first statement on equivalences of covers corresponding to elements

in a Nielsen class. Denote the subgroup of the normalizer, NSn(G), of G in Sn that

permutes a given collection, C, of conjugacy classes, by NSn(G,C).

Proposition 3.1 (Spaces I). As above, suppose µ : W0 → W1 is a continuous

isomorphism with µ ◦ ϕ1 = ϕ0 (commuting with the projections to P1
z). Then, µ

is automatically analytic. It permutes elements of www′ according to h ∈ NSn(G,C),

inducing µ∗h : g ∈ G 7→ hgh−1; and conversely.

There are two extremes for the equivalences we allow for such µ s:

(1.31a) Inner: The effect of running over all g(λ∗) s is to change the permutation

representation T by conjugating by an element of G.

(1.31b) Absolute: Changes of permutation given by conjugating T by any g ∈ Sn
maps 〈g1, . . . , gr〉 = G into itself.

That is, inner equivalence is minimal to account for not indicating a choice of

basepoint, and absolute is maximal (equivalencing the most covers).

Comments. There is a point to be made on (1.30) To keep the loops pairwise

non-intersecting except at z∗0 requires only using a fan of λ∗ s, one for each i, just

slightly varied from each other. It is a minor point (see [Fr77, Lem. 1]).

When λ∗ is a closed path, using the path lifting property produces a permutation

g(λ∗) ∈ G onwww′, the points lying over z0. This is the source of why inner equivalence

is the minimal equivalence to assure that using a base point in the construction of

the Hurwitz spaces does not appear in their final description in §3.1.3. �

3.1.3. Representations of Hr produce spaces. Now we show how braids acting

on (equivalence classes of) elements in Nielsen classes produce the Hurwitz spaces.

Each equivalence class corresponds to an equivalence class of Nielsen classes. Again,

we distinguish between the two most used equivalences: absolute and inner. Then,
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assuming the hypothesis of Lem. 2.3, Prop. 3.5 constructs total spaces of covers

from the main theorem on fundamental groups applied to the space Ur. We also

relate the respective spaces for those two equivalences.

Fundamental group representations give covers: Recall: unramified covers of

a space, Z, arise from permutation representations T : π1(Z, z0) → Sn of the

fundamental group of Z. We now apply this to π1(Ur, zzz0) = Hr.

(1.32)
The cover is connected if and only if T is transitive:
For each i ∈ {1, . . . , n}, ∃h ∈ π1(Z, z0) | (1)T (h) = i.

Proposition 3.2 (Spaces II). Applied to (1.29b), equivalences interpret when

the final cover, ϕ1, after dragging ϕ0 along qB is isomorphic to ϕ0. Whatever the

equivalence †, this defines a parameter space of covers denoted by H(G,C)†.

Mapping a cover of P1
z to its (unordered) branch points presents H(G,C)† as

an unramified cover Φ†H : H(G,C)† → Ur of Ur,

Here: H(G,C)† arises from a representation of π1(Ur, zzz0) acting on Ni(G,C)†

(made explicit using the rules of §2) [Fr77, §4].

(1.33a) If † = abs (absolute), then Ni(G,C)† is

Ni(G,C)abs = Ni(G,C)absT = Ni(G,C)/NSn(G,C),

where we drop the representation T if we know it from context.

(1.33b) If † = in (inner) then Ni(G,C)† = Ni(G,C)in = Ni(G,C)/G.

Comments. We make use of the following comments later. Inner equivalence is

understood to be Ni(G,C, T )in = Ni(G,C)/G where T is the regular representation

of G, and each (Galois) cover Ŵ → P1
z in the Nielsen class includes an isomorphism

(1.34) ψ : Aut(Ŵ/P1
z)→ G, defined up to an inner isomorphism of G.

For each h ∈ G, and ggg ∈ Ni(G,C)†, there exists qB ∈ Hr such that

(1.35) (ggg)qB = hgggh−1, with qB dependent on both h and ggg.

With the operators qi in §2, the idea comes from

(1.36) (ggg)q1 · q2 · · · qr−1 · qr−1 · · · q2 · q1 = g1gggg
−1
1 .

This concludes showing that the braid action automatically equivalences Nielsen

classes if they are inner conjugate �

Dragging a cover around by its branch points defines an orbit of Hr on a Nielsen

class Ni(G,C)†. Therefore an irreducible cover of Ur (Prop. 3.2). Doing this for each

Hr orbit assigns an equivalence class of covers to each point on the cover H(G,C)†

or even a space of covers in any simply connected neighborhood of any point of

H(G,C)†. The next proposition relates absolute and inner equivalence.
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The spaces of Prop. 3.2 are generalizations of the moduli space of curves of a

fixed genus. That is, all covers ϕ : W → P1
z in a fixed Nielsen class Ni(G,C)† have

the same genus, gW
def
= gG,C. We compute it easily using the notation of the index,

ind(g) = deg(T )−k, of any g in a class C which has precisely k orbits under T . This

defines ind(C), and

(1.37) Riemann-Hurwitz: 2(deg(T )+gG,C−1) =

r∑
i=1

ind(Ci).

Remark 3.3. See Def. 3.7 on braiding inner vs outer automorphisms. This

topic is significant for many of our applications.

Remark 3.4 (Comments on equivalences). Branch cycles give permutation rep-

resentations of Π1(Uzzz, z0). We’re not done with our basic equivalences yet, as we

also have reduced equivalence Ch. 2 §2.1.3. There are others, too, that have been

used in applications such as [DFr90b]. Further, there is a natural notation for con-

sidering when one permutation representation extends another, on the same group

or a covering group, and thereby consider chains of covers and the maps induced

on Hurwitz spaces from these.

Further, more generally we could add equivalences on permutation represen-

tations of Π1(Uzzz, z0). That would be appropriate for relating the Hurwitz spaces

themselves. We haven’t considered these systematically as the applications are a

different nature than those considered in this book.

3.2. Relating inner and absolute spaces. Given a faithful (transitive) per-

mutation representation T : G → Sn, and a Nielsen class Ni(G,C), there is auto-

matically a relation between H(G,C)in and H(G,C)abs.

Prop. 3.5 shows the result on the spaces H(G,C)abs of the fine moduli condition

on the group G.

Proposition 3.5 (Spaces III). Assume (G,T ) is self-normalizing as in Lem. 2.3.

Then, there is a unique total family, or fine moduli structure,

ΦabsT
T : T absT → H(G,C)absT × P1

z

on H(G,C)abs
T , so that the pullback over ppp× P1

z represents the equivalence class of

the covers associated to ppp ∈ H(G,C)absT .

The Galois closure construction of (1.20) produces a unique total family,

Φin
T : T in → H(G,C)in × P1

z

on H(G,C)in with p̂pp ∈ H(G,C)in over ppp representing an inner (Galois) cover map-

ping to an absolute cover. Further, all these spaces are quasi-projective varieties.
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For any irreducible component H′′ of H(G,C)in, the natural map to its image,

H′, in H(G,C)absT

(1.38) is Galois with group a subgroup of NSn(G,C)/G.

The remainder of this subsection consists of background and comments on

Prop. 3.5. §3.2.1 emphasizes the main condition on a moduli space that appears in

applications: fine moduli. It also introduces the idea that RET meshes seamlessly

with describing the moduli spaces that put covers in natural families.

Braid orbits on absolute (resp. inner) Nielsen classes give the absolutely irre-

ducible components of absolute (resp. inner) Hurwitz spaces. At the heart of §3.2.2

is how to enumerate the components of the inner Hurwitz space that go to a a

single component of the absolute space. A major part of identifying components

appears in the topic of braiding outer automorphisms.

3.2.1. Fine moduli and expanding RET. In relating the construction of Hin to

that of Habs as a Galois closure construction based on (1.20) we are elaborating on

[BFr02, §3.1.3]. We give the original argument in [Fr77, §4], based on Riemann’s

work on compact Riemann surfaces and [GRe57] as below.

From Lem. 2.3, the self-normalizing condition translates to say covers in the

Nielsen class Ni(G,C)absT have no automorphims. Thus, a unique map patches

any family of such covers on two overlapping open (simply-connected) sets on

H(G,C)absT . A well-known co-cycle patching puts a total family over the space,

giving ΦabsT . We regard the association of elements of Nielsen classes to covers with

branch cycles in a Nielsen class, as in (1.23), as part of RET.

Many refer to RET as if its only aspect is that any (compact Riemann surface)

cover ϕ : W → P1
z has a function field determining it. Or its equivalent, it embeds

in a closed subspace of some projective space.

Ch. 2 applications require the generalization of this to which we refer below in

these comments. Some need only moduli fields of the components (definition fields

as moduli spaces; Def. 4.8). Others require finding points on those same spaces over

some specific field (like Q).

Now you can apply the Galois closure construction to ΦabsT
T

def
= Φabs,

a degree n = deg(T ) cover of H(G,C)abs × P1
z.

The construction then is to take the n-fold fiber product of Φabs, remove the ap-

propriate version of the fat diagonal and refer to the result as

(1.39) Φ′ : T ′ → H(G,C)abs × P1
z.

The Galois closure of the individual covers appears along the fibers over each

ppp × P1
z, for ppp ∈ H(G,C)abs, but usually more times than even in the application

of the construction for each individual cover. Now, however, we must figure how



3. HURWITZ SPACES PARAMETRIZE COVERS IN Ni(G,C)† 53

to normalize and what we are getting from taking a component. From the start,

we need to know that irreducible components of H(G,C)abs are quasi-projective

normal varieties. Initially, we form them analytically, not algebraically.

[Fr77] applies a deep theorem – that of Grauert-Remmert [GRe57] – to as-

sert that normalization in a function field makes sense. [H77, p. 442] references

[GRe58], which is a more complete writeup of the three short Comptes Rendu

papers. This, by itself is an extension of part of Riemann’s existence theorem.

It says that if W is an irreducible analytic space, covering a Zariski open quasi-

projective normal variety Z, then W itself is dominated by a unique quasi-projective

normal variety W̃ . The major point is that W̃ has a field of functions, obtained

by extending the functions of Z by one more function that separates points and

tangent directions in general fibers of W → Z.

(1.40a) For the case of H(G,C)absT , the quasi-projective normal variety Z is the

Ur, (1.27) which is nonsingular, so normal.

(1.40b) Even the case ϕ : W → P1
z in §2 required this.21

(1.40c) With self-normalizing for (G,T ): W = T absT and Z = Ur × P1
z.

(1.40d) The proof of [FrV91, Thm 1] reduces the special cases (1.40a) and (1.40c)

to the 1-dimensional case (1.40b).

(1.40e) Besides having a coherent modern treatment, [Gr71] has the foundations

of `-adic modules from cohomology.

3.2.2. Identifying fibers of Hin over a point of Habs. Consider a component H′

of H(G,C)absT . For each cover, Wppp → ppp × P1
z, appearing in in a fiber of ΦabsT we

get a correct count of covers, over this given cover, along each fiber of Φ′ from the

quotient of the cardinalities of the respective Nielsen classes: |NSn,C(G)/G|.
Continue (1.39) and take a connected component, T in, of T ′. Normalize H′

in the function field of T in, to get H′′, a component of H(G,C)in. A subgroup,

GH′′/H′ ≤ NSn(G,C)/G is transitive on the covers in the fiber of T in lying over

Wppp → ppp × P1
z, for all ppp ∈ H′. Thus, H′′ → H′ is Galois with group GH′′/H′ . This

completes (1.38).

This shows that connected covers W ′′ppp → ppp × P1
z over Wppp → ppp × P1

z in T in

correspond to composing the identification of their automorphism groups with G

(up to conjugation by G) with conjugation by elements of NSn(G,C). As previously

(with Sn action on (1.18)), we get transitivity on those connected covers from

explicit elements of NSn(G,C). See Def. 3.7 for why these may not all lie in one

connected component.

21Riemann-Roch is stronger, saying for any compact Riemann Surface, it has a field of func-
tions. This is nontrivial even when applied to a genus 0 Riemann surface. There is no general

version like that for analytic spaces.
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Remark 3.6. Applications, however, even without the adjective, fine, use that

H(G,C)† has moduli space meaning, with the relation between the equivalence

classes inner and absolute (see Rem. 3.10). Ch. 6 §4.3.2 expediently surveys what

is now called the stack structure for one approach.

Braiding automorphisms: Consider a braid orbit O in Ni(G,C) and an automor-

phism α of G that preserves C (with proper multiplicity).

Definition 3.7 (Braiding automorphisms). If for ggg ∈ O and q ∈ Hr,

(ggg)q = (ggg)α, we say q braids α.

Since the α action commutes with any braid q′ ∈ Hr acting, the test for braiding

an automorphism is independent of the representative ggg ∈ O.

More generally, the dominant problem in this book is the following.

Problem 3.8. For a given Nielsen class Ni(G,C)†, find conditions that identify

Hurwitz space components (braid orbits) and their moduli fields.

Our techniques for doing this – especially the sh-incidence matrix, and the lift

invariant – often either reveal a geometric way to separate the distinct orbits, or

show them to be conjugate under the action of the absolute Galois group GQ.

A preliminary example on the Nielsen class Ni(A4,C±32)† illustrates both tech-

niques. Ch. 2 §3.3.2 for sh-incidence and Ch. 2 §3.3.3 for the lift invariant, where

precise cusp types, called there HM and DI separate the components. Then, (1.41)

gives geometric interpretation we can recognize as more classical. whereas cuts

might not give much of a clue. Label the respective inner Hurwitz space compo-

nents as HHM and HDI.

(1.41a) Only for ϕ̂ : Ŵ → P1
z in HHM does there exists a degree 2 unramified

cover ϕ′ : Y →W for which ϕ̂ ◦ ϕ′ is Galois with group Â4.

(1.41b) Only for ϕ̂ : Ŵ → P1
z in HHM can we identify a cover on the boundary of

the compactification of HHM with a totally degenerate cover.

These separations are recognized by GQ, and therefore both HHM and HDI have

moduli field Q. This is an example that uses “cuts,” as a theoretical background

behind braid orbits, though indirectly an answer for what the questions (1.26) seek.

Remark 3.9. Expression (1.36) says you can always braid inner automor-

phisms: conjugations of ggg by some g ∈ G. This may not apply to h ∈ NSn(G,C) or

to an outer automorphism not represented by some g ∈ Sn, even if it permutes the

conjugacy classes in C. Explaining when you can, or cannot, braid outer automor-

phisms appears in most applications (say, Thm. 1.7 or in Ch. 5).
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Remark 3.10. We always have the regular representation T for considering

Ni(G,C)abs: the representation of G on the cosets of {1G}. Unless, however, G is

trivial, that won’t satisfy fine moduli.





CHAPTER 2

Fine Moduli and the RIGP

This section starts using what we introduced in Ch. 1. In (1.40), especially in

comments to Prop. 3.5, we allude to two oft present extras on families of covers:

(2.1a) quasi-projective coordinates; and

(2.1b) a fine moduli structure.

§1 explains how (2.1) allows us to reliably correspond K points (say, a number field),

on certain Hurwitz spaces to encapsulate diophantine problems like the RIGP.

Two tools immediately allow serious computing: Braid action and the Branch

Cycle Lemma (BCL). §2 starts the former topic, and an equivalence – reduced,

along with their corresponding Hurwitz spaces – on covers. Then it focuses on the

Braid action when the Nielsen classes are of r = 4 conjugacy classes.

This case is important as it expands greatly on modular curves in a territory

still modular curve-like making our examples accessible. When r = 4, reduced

spaces are upper half-pane quotient coverings of the j-line. Their cusps on the

compactification over j = ∞ ∈ P1
j explictly identify with orbits of a subgroup of

the Hurwitz monodromy group H4. That produces an efficient formula for the genus

of the reduced Hurwitz spaces.

§3 introduces the first computational tool for identifying Hurwitz space compo-

nents: the sh-incidence matrix. It applies for all values of r. We show it off on two

examples directed at the ultimate goals of the book applying to the OIT.

Then, §4 introduces the BCL. A corollary gives the moduli field of absolute or

inner Hurwitz spaces, the first ingredient for an application, say, to the RIGP.

While this can sometimes be sufficient for results, it is subtler to find the precise

moduli field of the components of Hurwitz spaces. The main theme of Ch. 3 is an

approach to generalizing the BCL that often does suffice, based on the second

fundamental idea for identifying Hurwitz space components, the lift-invariant.

1. Polarizations and fine moduli

Embedding an algebraic variety, V , over a field K in projective space requires

having a divisor D, for which the linear system L(D)
def
= {f ∈ K(V )|(f) +D ≥ 0}

contains sufficiently many functions that their values separate points and tangent

directions at those points. A polarization starts with having a divisor D′, for which

57
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some multiple D = mD′ gives such an embedding in projective N -space, PN :

v ∈ V (Q̄) 7→ (f0(v), . . . fN (v)), using some basis {f0, . . . fN of L(D)}.

The author learned it indirectly from the cocycle condition – as applied to

abstract varieties – of Andre Weil [We56] through [ShT61] during his post-doctoral

at the Institute for Advanced Studies 1967–69. In each case, though, it depends on

how the divisor class relates to the moduli problem. §1.1 comments on the cases that

arise with Hurwitz spaces where we see the polarization arising from the natural

polarization on the configuration space Ur.

Since our Hurwitz spaces are mainly families of curve covers of P1
z, the canonical

divisor class is always at hand. §1.3 adds comments on canonical classes as these

appear in several different applications.

1.1. Hurwitz space moduli definition field. The Hurwitz space structures

we produce are analytic, as in Prop. 3.1.3. Those include the Hurwitz space (un-

ramified) cover Φ†H : H† → Ur, of manifolds (so normal analytic varieties) for †
either absolute or inner equivalence.

1.1.1. Applying Grauert-Remmert. If, say, fine absolute moduli holds, that gives

a unique analytic total space (ramified) cover Φabs
T : T abs → Habs × P1

z, of mani-

folds compatible with the projection maps to Ur. Then, in the construction of §3.2,

a similar cover Φin
T appears, for which fine inner moduli holds (Lem. 2.3) from it

holding in the absolute case.

Then, the Grauert-Remmert Theorem (Comments of Ch. 1 Prop. 3.5) produces

a function field (for each component) for Habs. Normalization of Ur in that func-

tion field gives a unique normal project algebraic variety. Putting the components

together this gives Habs over Ur. A general remark suffices to show that a(n un-

ramfied) cover of Ur is equivalent to a cover with definition field in Q̄ (Rem. 1.2).

Similarly, using that Habs×P1
z is quasi-projective (from the Segre embedding),

we get a unique normal project variety for Φabs
T . The construction of Φin

T is done

without Grauert-Remmert, and the projective structure is another application of

the Segre embedding applied to the fiber product construction of §2.1.1.

1.1.2. The moduli field, QH. The goal for a particular Hurwitz space, H, is an

explicit (number) field QH for which a K point ppp ∈ H containing QH assures that

a representative of the equivalence class will have definition field K = Q(ppp). The

moduli field is well-defined (below). Yet, the conclusion in general – without fine

moduli – is only this.

(2.2) A representative of ppp has definition field K =⇒ K ⊃ QH.

It is not just a statement about the definition field of the underlying Hurwitz

space itself as a quasi-projective variety. If H has fine moduli then this works as
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said here. Without fine moduli, QH still has meaning, though such a K point leads

to a weaker conclusion (Rem. 4.9).

Each Hurwitz space, absolute, inner, and reduced versions of each, is defined

by an equivalence on a Nielsen class. For each there is a precise criterion for fine

moduli, based on that Nielsen class equivalence, Ni(G,C)†. The ingredients appear

in the following two lists that address the relation between a given cover ϕ : X → P1
z

(2.3) describing how to detect the Nielsen class of the cover.

First: Compatible actions of σ ∈ GQ on a cover, its branch points and Puiseux

expansions above branch points.

(2.3a) Given a cover ϕ : X → P1
z in a Nielsen class, defined over Q̄, σ ∈ GQ acts

on the cover to give ϕσ : Xσ → P1
z.

(2.3b) In all cases, σ acts on the branch points zzz of ϕ, sending them to collectively

to branch points of ϕσ.

(2.3c) (2.3b) induces a compatible action on the Puiseux expansions of functions

locally uniformizing ϕ over those branch points.

Second: Compatible actions of σ ∈ GQ on the point representing a cover and

the moduli space data.

(2.4a) Inner equivalence adds the action of σ on the automorphims of ϕ.

(2.4b) Adding reduced equivalence won’t change the moduli definition field, though

fine moduli may no longer hold.

(2.4c) σ acts on ϕ compatibly with acting on T → H× P1
z → Ur.

The definition fields in each case come from the oft-appearing Branch Cycle

Lemma (BCL, §4). Even with fine moduli, an absolutely irreducible component H′

of H (corresponding to a braid orbit on a Nielsen class; we give many examples)

may have a nontrivial extension, say QH′ , of QH as its moduli definition. For that

component, QH′ is analogous as above for a representative of a point in H′.
The Hurwitz space and its attached moduli structure need – at least – a scheme

structure for their K points to have any meaning. We must assure that if someone

else has done the same with the same spaces, their K points and ours will be the

same. This requires that structure arise from an embedding in projective space,

based on the linear system of an equivalence class of divisors compatible with the

moduli structure.

Polarization data does exactly that. Usually we expect a natural divisor class,

say giving a polarization, to arise from a relation between a space and some conve-

nient projective space. §3.2.1 has already used such onH, its total space T → H×P1
z

and the diagram including the map to the configuration space Ur. We track all of

these to the projective space Pr containing Ur.
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1.2. Covers over Q̄. Assume the normal quasi-projective variety V (a lo-

cally closed subset of projective, normal V̄ ), is defined over a subfield K ≤ C. We

mean that V̄ \ V is also defined over K. We only require a little of the topology of

quasi-projective algebraic varieties, because the moduli spaces which we define use

fundamental groups detailed explicitly in [Fr90b]. Nevertheless Rem. 1.2 has refer-

ences to a relatively modern book, which includes that the (discrete) fundamental

group π(V, v0) of such a variety can be gleaned from its structure as a CW complex

using a generic curve on V . In particular, a finite unramified cover ϕH : WH → V

is defined by a subgroup, H ≤ π1(V, v0) of finite index.

Lemma 1.1. Then WH is a equivalent to a cover of V defined over a finite

extension of K.

Proof. From [GRe58] as used in Ch. 1 §3.2.1, WH is quasi-projective, a

locally closed subset in Pt with its closure W̄H a normal variety (defined over C).

It is therefore defined over a finitely generated extension L of K (contained in C)

gleaned from the coefficients of the equations for W̄H . We show it is equivalent to

a cover defined over a finite extension of K. Three points establish the Lemma.

(2.5a) L defines a variety UL
def
= U with function field L, for which u ∈ U(K̄)

gives a specialization WH , u with equations having coefficients in K(u).

(2.5b) The discriminant of the cover, as a function of u is defined over K. Con-

clude over a Zariski open subset of U , the discrimiant is constant, and

each W̄H,u is a cover of V̄ , unramified over V .

(2.5c) In a Zariski neighborhood of u•, all covers WH,u → V are topologically

(and therefore analytically) equivalent.

The conclusion of the lemma then follows, since in any neighborhood of u• there

will be points, algebraic over K, on U , say, by Hilbert’s nullstellensatz.

Proof of (2.5a): Since L is finitely generated, it has finite transcendence dimen-

sion. Therefore it has a description as a chain of extensions L/K(yyy)/K: with yyy a

transcendence basis for L, a maximal set of elements algebraically independent over

K; and L/K(yyy) a finite extension [La71, p. 254]. Define UL as the normalization

in L of the affine variety defined by the coordinates yyy.

We can use the coefficients of WH , generating L, as a generic point, u• of UL.

Then, UL is quasi-projective, as is UL×Pt from (1.19). Inside UL×Pt we have the

union of the W̄H,u s from specializing the coefficients of WH over u ∈ UL.

Proof of (2.5b): Suppose ψ′ : W ′ → V ′ is finite cover of normal projective va-

rieties. The ramification locus is defined on V ′ locally by the discriminant locus

Suppose, locally in the Zariski topology, that ψ′ is defined by Spec(S)→ Spec(R),



1. POLARIZATIONS AND FINE MODULI 61

an embedding of integral domains, with R = S[w′], and F (w) = Fw′(w) the irre-

ducible polynomial for w′ over S, with deg(F ) = m. The discriminant, d(F ) – also

known as the resultant of F and ∂F
∂w – then locally defines the discriminant locus

of the cover [La71, Chap. V, §10].
It is the determinant of a 2m−1×2m−1 matrix with ith row entries as in (2.6),

from i = 1 to m−1 (top) and i = m to 2m−1 (bottom):

(2.6)
i = 1, . . . ,m−1 : 0i−1 times a0 a1 . . . am 0m−i−1 times

i = m, . . . , 2m−1 : 0i−m times ma0 (m− 1)a1 . . . am−1 02m−i−1 times

When S is not generated by a single element w′, write S as R[w′1, . . . , w
′
k].

Then use the ideal generated by all the d(Fw′i) s to define the discriminant locus as

the ideal they generate. In a Zariski neighborhood of the generic point of UH , the

discriminant is defined by specializing the discriminant at the generic point over

K. Since the discriminant at the generic point is defined over K, the discriminant

is everywhere the same in this Zariski neighborhood.

Proof of (2.5c): From the above, we have an analytic family W̃ → UL × V with

fiber over u ∈ UL, an unramified cover ϕu : WH,u → V , defined in an analytic

neighborhood U ′ of the generic point, u•, of V with the branch locus fixed. There-

fore, all covers in this continuous family are defined by using the same generating

paths of the finitely generated π1(V, v0). This final result uses topology. It does not

hold in positive characteristic even when dim(V ) = 1 (Rem. 1.3). We now show that

WH → V is analytically isomorphic to WH,u and conclude the lemma as above.

From the implicit function theorem, given a sufficiently small neighborhood U ′

of u• and w′(u•) ∈ ϕ−1
u• (v0), there is a continuous section

sw′(u•) : U ′ → W̃ → UL × V through (u•, w′(u•)).

This section allows us to identify w′(u•) with a unique element w′(u) ∈ ϕ−1
u (v0).

We show there is an isomorphism from WH to WH,u for u close to u•. In the style

of Ch. 1 §3.1.1, let P0 be generators of π1(V, v0).

The covers WH and WH,u are defined by respective permutation representations

τu• , τu : π1(V, v0)→ Sn, with the integers {1, . . . , n} identified respectively in each

representation with {w′(u•) ∈ ϕ−1
u• } and {w′(u) ∈ ϕ−1

u }.
Reminder: The result of τu(P ) is the endpoint of the unique path-lift of P to

the path starting on WH,u at any w′(u) ∈ ϕ−1
u (v0). Denote that unique path lift by

Pu,w′(u). If for each P ∈ P0, the effect of P on the respective fibers is the same, then

the two covers are equivalent. Use any convenient metric, D, in UL×Pt. Designate

a path P in V by t ∈ [0, 1] 7→ P (t).

Then, Pu,w′(u)(t) is a continuous function of (u, t). With w′′(u•) ∈ ϕ−1
u• (v0)

distinct from w′(u•), (use the sections sw′(u•) above) then Pu,w′′(u)(t) 6= Pu′,w′(u′)(t)

for u, u′ ∈ U ′ and U ′ small, and any t ∈ [0, 1]. Therefore, for U ′′ ⊂ U ′ a small
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compact subneighborhood of u•:

D(Pu,w′(u)(t), Pu′,w′(u′)(t)) < D(w′(u•), w′′(u•)), for (u, u′, t) ∈ U ′′ × U ′′ × [0, 1].

In particular, running over all P ∈ P0 and w′(u•), Pu,w′(u)(1) = Pu•,w′(u•)(1). This

concludes the argument that the covers WH and WH,u are equivalent. �

Remark 1.2 (“Old” topology). Suppose V is an algebraic variety over K, a

subfield of C. Then, its fundamental group, π1(V, v0), with v0 with coordinates in K,

is discrete. The topological properties of a (quasi-projective) algebraic variety over

the complexes is an old subject for which one of the last treatments can be found

in [Z71, Chap. VI] based much on many works of Lefshetz, listed in the volumes

bibliography. Although this is very detailed, and theoretically it applies only to

a nonsingular projective variety of dimension 2, the idea of a Lefshetz pencil is

presented in detail.

As is the relation between the fundamental group of a generic curve and the

fundamental group of the algebraic variety, and the homology groups of the variety.

This is done through putting a CW complex structure on the variety. The use of

resolutions of singularities doesn’t affect the fundamental group as we have all of

our varieties normalized, so the singularities have codimension 2 and don’t affect

it. [Sp66, p. 147] has the theorem that there is a topological space V for which

π1(V, v0) = G with G any a priori discrete group.

Remark 1.3 (Lem. 1.1 in positive characteristic). It is wild ramification that

causes Lem. 1.1 to be false even when V has dimension 1. [FrM02] replaces the

configuration space Ur for covers of P1
z in positive characteristic by a configuration

space (target) for families of sphere covers based on a definition of ramification data

and regular ramfication data, with the latter a generalization of higher ramification

groups even when the local ramification is not Galois. Even the Galois closure of the

covers in such families is not preserved, though the configuration spaces are of finite

type, and locally versal for the finite topology. Grothendieck’s famous theorem in

the case of curves, when ramification is tame, says Lem. 1.1 then holds, though

expected covers in that case might be missing if the prime of the characteristic

divides the monodromy group. [FrM02] thus produces just one-half of a wildly

ramified version of [Gr71].

1.3. Polarizations from the canonical class. Since we concentrate on Hur-

witz spaces of covers of P1
z. §1.3 added comments on the canonical (divisor) class,

A reasonable model of it starts with a curve. Denote the genus of a compact

Riemann surface X by gX . For this discussion, assume g > 0; g = 0 is an easier

case. Polarizations of curves come from the Riemann-Roch theorem: Take as your



1. POLARIZATIONS AND FINE MODULI 63

divisor, D′, any point. You need, however, a divisor invariant under GQ for an

embedding that presents the curve with equations over Q. See Rem. 1.4

Even, however, for compact, complex, torii, that are algebraic, there can be

several different polarizations. So, the subject of abelian varieties includes giving a

specific polarization. We later make contact with the following particular case.

For Jacobian varieties, of a projective curve X, there is a canonical polarization.

Consider the gX−1-fold symmetric product, W = Xg−1/Sg−1, of X. These are

positive divisors on X of degree g−1. Thus, if we translate W by some divisor D0

of degree g−1 on X, the result represents a divisor on the Jacobian JX of degree 0

divisors on X module linear equivalence.

To make this divisor even more canonical, Riemann took D0 to be very special,

a half-canonical divisor (2D0 is in the class of the divisors of holomorphic differen-

tials). He differentiated between the dimensions of the linear systems (even or odd).

Eventually he used each type for different purposes in his descriptions of objects –

differentials of various kind in particular – on X. [Fa73] is an older, still relevant,

source for the story of Riemann’s – and subsequent – attempts to form such objects.

These deal in local coordinates on the moduli of genus g curves. We will deal with

coordinates on Hurwitz spaces.

Remark 1.4. There is a subtlety as to whether a divisor class over K with a

nonempty linear system LD′ = {f ∈ K(X) | (f) + D′ ≥ 0} suffices to give a map

of X into a projective space PL with image having coordinates over over K. Yes,

PL is a projective space over Q̄. Yet, unless the space has a point over K, it is just

a Brauer-Severi variety – defining an element of the Brauer Group H2(GQ, (K̄)∗)

cite[p. 891-892]Ro02 or [Se67].1 It is not a distinction made in [H77] or [Mu66]

since they predominantly work over an algebraically closed field. The canonical

divisor class, though, is defined over the same field as is X.

1.4. Extension of constants. As we intend applications belonging to num-

ber theory, we have included the field K, which may be a number field: [K : Q] <∞
(often Q itself). We state several goals starting with the RIGP for a given G.

Problem 1.5. Find an absolutely irreducible Galois cover ϕ̂ : Ŵ → P1
z with

group G defined, with all its automorphisms (commuting with ϕ̂), over K.

That is, we seek an inner Nielsen class, Ni(G,C)in, containing a cover, ϕ̂, defined

over K. Our Main Theorem, followed by the BCL (acronym definition in Ch. 1)

expands the value of Hurwitz spaces. To state the most useful version of this result

we need one general definition.

1[Se67, Prop. 3] spells out key points about the Brauer group over a number field, including
that it is determined by the induced cohomology in the completions of the field where it is locally

trivial.
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Definition 1.6. Refer to ϕ : W → P1
z, a cover in Ni(G,C)absT , as a (G,G∗)

regular realization over K, if ϕ is defined over K, and its Galois closure ϕ̂ : Ŵ → P1
z

of ϕ overK has groupG∗. That means (§2.1), Ŵ has |G∗ : G| connected components

over K̄, all conjugate over K.

Theorem 1.7. [FrV91, Main Thm.] If G has no center, then the complete set

of inequivalent RIGP realizations of G over K corresponds to this set:

(2.7) inG
def
= ∪conjugacy class collections C ⊂ G {p̂pp ∈ H(G,C)in(K)}.

That is, for given G, if for even one conjugacy class collection C, there is any

K point p̂pp ∈ H(G,C)in, then

this regularly realizes G over K with a Galois cover ϕ̂ : Ŵp̂pp → P1
z.

Assume (G,T ) is self-normalizing, n = deg(T ). Then, ppp ∈ H(G,C)abs(K) cor-

responds to a (G,G∗) realization with G∗ ≤ NSn(G,C) (§3). For any p̂pp ∈ H(G,C)in

over ppp, as in (1.38), K(p̂pp) = K̂ is a definition field of

(2.8a) all components of Ŵp̂pp and ϕ̂ automorphisms; and

(2.8b) G(K̂/K) = G∗/G.

Comments. The ability to set up both the absolute and inner versions (2.7)

uniformly – without having to stipulate precise finite groups – to go after the

RIGP and IGP requires configuration spaces with obvious projective coordinates

as natural targets. Here they are the collections {Ur}∞r=3.

Referencing these gives meaning to the field generated by the coordinates of

p̂pp ∈ H(G,C)in (et. al.) over which the corresponding P1
z cover is defined. Abstract

schemes, though reasonable as moduli spaces, cannot provide a consistent meaning

to giving coefficients of equations over a desired field.

Precise reference to covers by branch cycles in (2.7) does contrast with the more

abstract stipulation of (G,G∗) realizations in (2.8). Still, as in Thm. 5.4, it produces

very big Galois groups over certain fields K. �

Definition 1.8 (Extension of Constants). Refer to K̂/K in (2.8) as the exten-

sion of constants for (the Galois closure of the cover of) ppp.

Thm. 1.7 strikes into using the tools of §2 to understand specifics about Hurwitz

spaces referenced by (G,C). By attending to the conjugacy classes, C, with G fixed,

we open the discussion these issues.

(2.9a) How the RIGP for (G,C) for one type of C, can be almost trivial, while

it is allied to famous unsolved problems for other C.

(2.9b) How in certain contexts, even if the fine moduli hypotheses don’t hold,

with no loss we can adjust (G,C) to assure they do.
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(2.9c) Where we can use (2.8) to build upon an IGP realization of a group we

identify as G∗/G to get an IGP realization of G∗.

(2.9d) What to think of our difficulties, starting with certain conjugacy classes

C′, upon allowing each class in C′ to repeat many times.

2. Braid Action for reduced equivalence

[Fr77, §4] gives generators and relations for Hurwitz monodromy acting on

Nielsen classes. (2.10) lists memorable generating elements. From (1.29d), Hr orbits

on a Nielsen class correspond to irreducible components of the Hurwitz space.

2.1. Braids acting on reduced Nielsen classes. §2.1.1 gives the generators

and relations ofHr and Br, while §2.1.2 shows paths on Ur that gives the generators,

and compute the most obvious relations. Details on relations that appear in our

use of these groups follows in subsequent sections.

2.1.1. Generators of Hr. Braids on Branch cycles generate the action of Hr,

the Hurwitz monodromy group, on a Nielsen class element ggg:

(2.10)
qi : ggg

def
= (g1, . . . , gr) 7→ (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gr);

sh : ggg 7→ (g2, g3, . . . , gr, g1) and Hr
def
= 〈q2, sh〉 with

sh qish
−1 = qi+1, i = 1, . . . , r−1.

We call qi the ith twist. Then, sh, sensibly enough is the (left) shift. The case r = 4

is so important in our examples, that when we get to reduced Nielsen classes, we

conveniently refer to q2 as the middle twist.

Braids lead this subsection, and §3 has detailed examples for using them. We

develop this more in the main examples of Ch. 5. It is the BCL that starts us into

a serious discuss about the spaces. Here are other important points.

(2.11a) From product-one (1.23c) on Nielsen classes Ni(G,C), sh is an r cycle on

all such classes.

(2.11b) (2.11a) allows reducing the subscript of qi modulo r. Easily check this by

starting with a given ggg.

(2.11c) Conjugating by sh, shows sh and q2 generate Hr.

Braid, Br, relations: The group Hr is a quotient of the

Artin Braid group, Br = 〈Q1, . . . , Qr−1〉,

by its (minimal normal) subgroup generated by

(2.12) Q1Q2 · · ·Qr−1Qr−1 · · ·Q2Q1, r ≥ 3.

These are the standard Br relations.

(2.13a) QiQj = QjQi for |i−j mod r−1| > 1;

(2.13b) QiQi+1Qi = Qi+1QiQi+1, i mod r−1.
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The quotient map is given by Qi 7→ qi, 1 ≤ i ≤ r−1. Calculate the action of (2.12)

on ggg = (g1, . . . , gr) in a Nielsen class to see the result is g1gggg
−1
1 .

Remark 2.1 (How sh works). The operation q1q2 · · · qr−1 on Nielsen classes

represents sh. Direct calculation on ggg = (g1, . . . , gr) ∈ Gr shows its effect:

ggg 7→ (g1g2g
−1
1 , . . . , g1grg

−1
1 , g1g1g

−1
1 ) shift, then conjugate by g1.

Problem 2.2. Running over all conjugates of (2.12), conclude that the minimal

equivalence on Ni(G,C) that affords an Hr action is Ni(G,C)in.

Hint: Use the generators of (6.35).

2.1.2. Explicit effect of braiding. [Fr77, p. 49–53] breaks the problem of com-

puting the effect of dragging a cover by its branch points into two parts. First, only

branch points restricted to lie on P1
z \ {∞} = A+. Here the ith “cut” runs from the

initial branch point z0
i zzz0 to −∞ parallel to the (negative) real axis.

This allows taking as a basepoint a simply-defined value: z0 = 1+max(<z′i)ri=1.

The presentations takes pains how to handle ‘cuts” – while dragging branch points

– when two or more points happen, at some time t′, to lie on a line parallel to the

negative x-axis.

Problem 2.3. Given r distinct points z1, . . . , zr on A+, and another point z0

distinct from them, show there are always smooth pairwise nonintersecting, except

at z0, paths γ1, . . . , γr starting (respectively) at z0 and ending at zi, that emanate

from z0 in clockwise order of their subscripts. Hint: Inductively, assume you have

achieved this for i, and use that A+ \{γ1, . . . , γi}∪{z0} is connected by contracting

all the paths to z0.

Use Prob. 2.3 to show with no loss, up to homotopy, we may initially assume

=(z0
1) < · · · < =(z0

r ). Let Qi be the automorphism of Fr = π1(A+, z0) that maps

the r-tuple of generators (ḡ1, . . . , ḡr), in order, to the new r-tuple of generators

ḡgg = (ḡ1, . . . , ḡi−1, ḡiḡi+1ḡ
−1
i , ḡi, ḡi+2, . . . , ḡr), i = 1, . . . , r − 1.

Fig. 1 gives a specific path Γi on Ar, that has the effect of achieving Qi, as

the acting of dragging branch points and pulling along classical generators lying

entirely on A+ that represent ḡgg. It starts at zzz0 and ends at

(z0
1 , . . . , z

0
i−1, z

0
i+1, z

0
i , z

0
i+2, . . . , z

0
r ) = (zzz0)σ, σ = (i i+1).

Its coordinates are constant, excluding the ith and i+1th. The ith coordinate zi

moves from z0
i to z0

i+1; the i+1th coordinate zi+1 moves from z0
i+1 to z0

i .

Consider the bounded component, W , of A1 \ λ, where λ is the set of points

on the path δiε̄i(δi+1)−1. With no loss assume that ε̄′i is outside W . Finally, let λi
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Figure 1. Traversing Γ̄i, zi and zi+1 change places without meeting

(resp., λ′i+1) be the clockwise path from bi to b′i (resp., b′i+1 to bi+1). It follows auto-

matically (as in Part 3 of the proof of Theorem 2.10) that the paths γ̄iε̄iγ̄i+1(ε̄i)
−1

and λi(ε̄
′
i)
−1λ′i+1(ε̄i)

−1 are homotopic (say, with bi and bi+1 fixed) and that the

bounded components of their complement contain z0
i and z0

i+1 and exclude z0
j for

j 6= i, i + 1. With a judicious choice, however, of ε̄′i this can be arranged without

appeal to previous results. We use the notation of Def. 4.8.

Proposition 2.4. Let Γ̄i be the path (z0
i , . . . , z

0
i−1, (ε

′
i)
−1, εi, z

0
i+1, . . . , zr). Then,

(Γ̄i)Q
∗ is Qi, the element of 4.10, i = 1, . . . , r − 1.

Proof. Apply a section Φ along Γ (Theorem 4.7). As before, assume that Γ̄i :

[0, 1]→ Ar \∆r. This is what we must show: that γ1
i is homotopic to γ0

i γ
0
i+1(γ0

i )−1;

that γ1
i+1 is homotopic to γ0

i ; and that γ1
j is homotopic to γ0

j for j 6= i or i+1. Note

that none of the coordinates of zzz0 can be located in the component W of P1 \ λ
(above), or else there would be an aj on the clockwise path along δ0 from ai to

ai+1, contrary to Ex. 2.9.

Choose d′ as in the proof of Theorem 4.7. There exists d′′ > 0 such that for

γγγ ∈ B(zzz0, d′′)+ we have Φ(t)(γγγ) ∈ B(Φ(t)zzz0, d′)+ for all t ∈ [0, 1][4.4]. As in the last

paragraph of the proof of Theorem 4.7 conclude:

(2.14a) γ1
i is homotopic to δiλi(ε̄

′
i)
−1λ′i+1γ̄i+1(λ′i+1)−1ε̄′i(λi)

−1(δi)
−1;

(2.14b) γ1
i+1 is homotopic to δi+1(ε̄i)

−1γ̄iε̄i(δi+1)−1; and

(2.14c) γ1
j is homotopic to γ0

j for j 6= i, i+1.

The same argument as in Part 2 of Theorem 2.10 shows that δiε̄i is homotopic

to δi+1 (with initial and endpoints fixed). From 4.11b this immediately gives γ1
i+1

homotopic to γ0
i .

Finally, γ̄iε̄iγ̄i+1 and λi(ε̄
′
i)
−1λ′i+1 are homotopic. Therefore 4.11a gives γ1

i ho-

motopic to δiγ̄iε̄iγ̄i+1(ε̄i)
−1(γ̄i)

−1(δi)
−1. This, in turn, is homotopic to

γ0
i δi+1γ̄i+1(δi+1)−1(γ0

i )−1 = γ0
i γ

0
i+1(γ0

i )−1

through an insertion of (δi)
−1δi (resp., δi(δi)

−1) between the terms γ̄i and ε̄i (resp.,

(ε̄i)
−1 and (γ̄i)

−1). This concludes the proof of the lemma. �

Thm. 2.5 summarizes what we use of Br [ArE25], [ArE47], [B47].
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Theorem 2.5. The natural homomorphism Q∗ from dragging branch points

maps π1(Ar \Dr,xxx0) onto the conjugacy class preserving automorphisms of Fr that

also preserve ḡ1 · · · ḡr, induces an isomorphism between the former group and Br =

〈Q1, . . . , Qr−1〉. This gives a presentation of Br by the normal subgroup generated

by the relations in (2.13).

2.1.3. Reduced equivalence. There are other equivalences † than inner or ab-

solute. Yet, in each case we understand many properties of the space of covers

through Hr acting on Ni(G,C)†. For F a field, recall the group (under composi-

tion) of Möbius transformations on P1
z:

(2.15) Möb(F )
def
=
{
z 7→ az+b

cz+d
| ad−bc = 1, a, b, c, d ∈ F

}
.

For F = C these give the group of automorphisms of P1
z. Identify these with equiv-

alence classes of matrices
(
a b
c d

)
satisfying the same conditions, modulo diagonal

matrices {
(
a 0
0 a−1

)
| a ∈ F ∗}. This is also denoted PSL2(F ). §?? has a list of

related affine groups.

Definition 2.6 (Reduced action). A cover f : W → P1
z is reduced equivalent

to α ◦ f : W → P1
z for α ∈ PSL2(C).

Also, α acts on zzz ∈ Ur by acting on each entry. That extends to an action on

any cover Φ† : H(G,C)† → Ur and a reduced Hurwitz space cover:

(2.16) Φ†,rd : H(G,C)†,rd → Ur/PSL2(C)
def
= Jr.

Reduced uses: Here are two reasons for its use, each connecting to a different half

of the applications in this book. Recall the upper half space

Hup = {z ∈ C | the imaginary part of z > 0}.

(2.17a) If a cover ϕ̂ : X̂ → P1
z gives an RIGP realization of G over Q, then so

does α ◦ ϕ̂ for α ∈ PSL2(Q).

(2.17b) For r = 4, reduced Hurwitz spaces are quotients of Hup (Thm. 2.13).

Comment on (2.17a): We separate the RIGP from the IGP. From an RIGP

realization of G, applying Hilbert’s Irreducibility Theorem §6.1.1 by specializing

z in Q immediately produces infinitely many IGP realizations of the given group

G. The specializations that work are dense in any particular topology on P1
z(Q).

Comparing those to IGP realizations not coming from an RIGP realization is still

nontrivial (as in §6.1).

Whether there are infinitely many RIGP realizations of G, or more general

parameters for their realizations, is also significant. Using the equivalence of (2.17a)

precludes trivial changes in such realizations.
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Comment on (2.17b): Not only are the two halves of this book connected, but

we can easily use the properties of the spaces on which they rely to see they have

analogs of the properties of modular curves. That starts with the upper half-plane

paradigm below. There, we get to ask questions about the nature of the finite index

subgroup of PSL2(Z) that defines a reduced Hurwitz space when r = 4. Especially

about its cusps when it is compactified to a cover of P1
j , the classical j-line. The

comparison comes clearer after we have introduced M(odular) T(owers).

2.1.4. The upper half-plane paradigm. A reduced Hurwitz space of 4 branch

point covers is a natural j-line cover – Ur/PSL2(C) identifies with P1
j \ {∞} – that

completes to H(G,C)†,rd → P1
j ramified over 0, 1,∞. We refer to this as the

The upper half plane paradigm (for r = 4),

a consequence of Thm. 2.7. That demonstrates that modding out by PSL2(C) on

the cover H(G,C)† → U4 produces a natural cover of the classical j-line P1
j \{∞} =

Uj = Hup/SL2(Z). We have placed the corresponding images of elliptic fixed points

on Hup at 0 and 1.

Theorem 2.7. The image, H†/PSL2(C) = H†,rd, of any component, H† of

H(G,C)† is a quotient of the upper half-plane Hup by a finite index subgroup of

PSL2(Z). That makes H†,rd → P1
j \ {∞} a cover ramified of order (at most) 3

(resp. 2) over j = 0 (resp. 1).

For r = 4, Thm. 2.13 handles the geometric monodromy, and cusps, of reduced

Hurwitz space components as covers of the j-line. In particular, it computes the

genus of such reduced components.

Then §3 applies that to give example spaces. We have simplified the treatment

of [BFr02, Prop. 2.3 and its proof, §2.3] in respective proofs of Thm. 2.7 and

Thm. 2.14 (a tighter relation between H4 and B4, as in (2.13)) in §4. Taking off from

the upper half-plane paradigm, whereby reduced Hurwitz spaces defined by r = 4

conjugacy classes are actually upper half-plane quotients which we may compare

with the special case of modular curves, §?? produces a formula for computing the

components and genuses of reduced Hurwitz space components through their being

covers of the classical j-line.

2.2. Reduced Hurwitz spaces for r = 4. With Q = 〈(q1q2q3)2, q1q
−1
3 〉,

[BFr02, §4.2] contains the formula whose statement in Thm. 2.13 uses

(2.18) reduced Nielsen classes Ni(G,C)†,rd
def
= Ni(G,C)†/Q.

2.2.1. Universal Br and Hr actions. Consider the free group, Ḡr, on generators

ḡ1, . . . , ḡr, with π(ḡgg) = ḡ1 · · · ḡr. Denote the conjugacy class of ḡi by Cḡi , i =
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1, . . . , r. Now consider a version of a Nielsen class.

N̄ir(Ḡr,Cḡgg)π(ḡgg)
def
= {ḡgg′ ∈ Cḡgg | π(ḡgg′) = π(ḡgg) and 〈ggg′〉 = Ḡr}.

Use the same actions for the Qi as for the qi s in (2.13). Then, N̄ir(Ḡr,Cḡgg)π(ḡgg)

would be a univeral Nielsen class, except we have replaced product-one with π(ḡgg′)

– preserved by Br – being fixed at π(ḡgg).

Instead, replace this with the condition π(ḡgg) = 1 and mod out by the inner

action of elements of Ḡr (ḡgg′ is equivalent to ḡggg′ḡ−1, ḡ ∈ Ḡr). Then, we get an

object, N̄ir(Ḡr,Cḡgg)
in, that is akin to universal inner Nielsen classes. On it we do

have an Hr action as in ((1.29c) or Prob. 2.2). Denote the image group of this

action by Mr, the Mapping Class Group.

For the rest of this section we assume r = 4 in §4.2.1. Then, (6.34) gives the

extra relations for M4 (beyond those for B4):

(2.19)
τ1(4) = (Q3Q2)3 = 1, τ2(4) = Q−2

1 Q2
3 = 1,

τ3(4) = (Q2Q1)−3 = 1 and τ(4) = (Q3Q2Q1)4 = 1.

Consider Ch. 6 (6.35) for r = 4, with Q1Q2Q
2
3Q2Q1 = R1(4), and

(2.20)
R2(4) = Q−1

1 R1(4)Q1, R2(4) = Q−1
2 R1(4)Q2,

R3(4) = Q−1
3 R1(4)Q3 and (Q1Q2Q3)4.

Denote an element of B4 (resp. H4) that has the effect of conjugating ggg by π(ḡgg)

by Q(ḡgg) (resp. q(ḡgg)).

Lemma 2.8. Both (Q1Q2Q3)4 and (Q3Q2Q1)4 have the effect of Q(ḡgg).

Then, B4 acting on Ḡ4 induces α4 : B4 → Aut(Ḡ4) with the center 〈(Q1Q2Q3)4〉
of B4 generating the kernel. This induces µ4 : H4 →M4.

The kernel of B4 →M4 is the direct product of

the free group K∗4 = 〈(Q3Q2)3, Q−2
1 Q2

3, (Q2Q1)−3〉 and 〈(Q1Q2Q3)4〉.

Above, Z = i(σ̄1σ̄2σ̄3σ̄4) is identical to an element of B4. Consider the image z of

Z in H4:

(q1q2q3)4z = 1 = (q3q2q1)4z = q2
1q
−2
3 z and z2 = 1.

In particular, combining this with (2.26) identifies M4 with the image of H4 in

Aut(G4)/Inn(G4). So, the image of z in M4 is 1.

Proof. The map i induces i : G4 → Inn(G4). Action of B4 preserves Π(σ̄̄σ̄σ).

Thus, it induces a homomorphism of B4 into Aut(G4) where D goes to the automor-

phism i(σ̄−1
1 ), σ̄̄σ̄σ 7→ σ̄1σ̄̄σ̄σσ̄

−1
1 (as in (??)). Conclude: Modulo inner automorphisms

of G4, D acts trivially, producing the desired homomorphism

H4 → Aut(G4)/Inn(G4).

Now consider the explicit formulas. Most of the calculation is in (??): Q1Q2Q3

cycles entries of σ̄̄σ̄σ back 1, and conjugates all entries by the first entry’s inverse. So
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(Q1Q2Q3)4 leaves entries of σ̄̄σ̄σ untouched except for conjugating them by

(σ̄1σ̄2σ̄3σ̄4σ̄
−1
3 σ̄−1

2 σ̄−1
1 σ̄1σ̄2σ̄3σ̄

−1
2 σ̄−1

1 σ̄1σ̄2σ̄
−1
1 σ̄1)−1 = (σ̄1σ̄2σ̄3σ̄4)−1.

Also, Q3Q2Q1 cycles the entries of σ̄̄σ̄σ forward 1. The new first entry is the old 4th

entry conjugated by the inverse of the product of the old first three entries. Thus,

(Q1Q2Q3)4 and (Q3Q2Q1)4 act the same. Add that D maps to 1 in H4 to see

1 = (q1q2q3)4(q3q2q1)4 = (q1q2q3)8 = z−2.

Let Q′ = Q1Q2Q3. Extending the calculation above gives the next list:

1 = (Q′)−1DQ′(Q1Q2)3i(σ̄1σ̄2σ̄3σ̄4);

1 = (Q′Q1Q
−1
3 )2(Q′)−1DQ′i(σ̄1σ̄2σ̄3σ̄4);

1 = (Q′)4i(σ̄1σ̄2σ̄3σ̄4); and

1 = (Q1Q
−1
3 )2(Q′)−1D(Q1Q2Q3)(Q1Q2Q3)−2D(Q1Q2Q3)2i(σ̄1σ̄2σ̄3σ̄4).

Add the relation Q1Q3 = Q3Q1 to deduce, in order, these relations in H4:

(2.21)
a) (q1q2)3z = 1; b) (q1q2q1)2z = 1; c) (q1q2q3)4z = 1;
d) (q1q

−1
3 )2z = 1; e) q1q3 = q3q1.

So, the image of z in M4 is 1.

The kernel of α4 contains elements of B4 inducing inner automorphisms com-

muting with conjugation by σ̄1σ̄2σ̄3σ̄4 = c. Since c generates conjugations commut-

ing with c, 〈(Q1Q2Q3)4〉 generates the kernel of α4.

Generators of K∗4 act on G4: Respectively, (Q3Q2)3, Q−2
1 Q2

3, (Q2Q1)−3 induce

conjugation by g4, g1g2, g1. These conjugations on G4 form a free group. So K∗4 is

a free group on these generators. �

From Lem. 2.8, the direct product of the free groupK∗4 = 〈(Q3Q2)3, Q−2
1 Q2

3, (Q2Q1)−3〉
and 〈(Q1Q2Q3)4〉 equals N4

def
= ker(B4 → M4). Denote Q1Q2Q

2
3Q2Q1 (D in (??))

by R1. The following presentation of N4 is superior for our purposes. It easily follows

from the notation and proof of Lemma 2.8.

The effect of Ri on ḡgg is conjugation by ḡi. We consider Prop. 2.9 only for r =

4, though it works for any value of r.

Proposition 2.9. Elements of (2.20) generate N4. Any representative ggg in a

Nielsen class Ni(G,C) = Ni produces an evaluation homomorphism

ψggg : N4 → G/Cen(G) mapping

4∏
i=1

Ri to 1.

Conversely, any homomorphism ψ : N4 → H mapping
∏4
i=1Ri to 1 produces an

associated Nielsen class representative.

For Q ∈ B4, act on ψggg by applying evalution of Q−1RRRQ to ggg. An orbit on Ni is

equivalent to a B4 orbit on the homomorphisms ψggg (up to conjugation by G).
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2.2.2. The groups M4, M̄4 and Q′′. Denote the element q1q
−1
3 by z̃. Prop. 2.10

shows that B4 →Mr factors through H4 to give H4/〈z̃2〉 = M4.

It also shows precisely what relations give the quotient for the H4 action on

reduced equivalence classes of covers; that reduced equivalence kills z̃.

Set γ̄0 = q1q2 and γ̄1 = q1q2q3.

Suppose P are classical generators of π1(Uzzz, z0) relative to (zzz, z0) (1.23).

Lemma 2.8 shows adding these relations to B4 is equivalent to adding q2
1q
−2
3 = 1

to H4. This produces new equations:

(2.22) q1q2q
2
1q2q1 = (q1q2q1)2 = (q1q2)3 = 1.

Then, γ0 = q1q2, γ1 = q1q2q1 and γ∞ = q2 satisfy

(2.23) γ0γ1γ∞ = 1.

The relation q1q
−1
3 = 1 is not automatic from (2.26). Crucial, however, is how

M4 acts on reduced Nielsen classes: equivalence of branch cycles ggg in a Nielsen

class equivalenced by the action of PGL2(C). This action does factor through the

relation q1q
−1
3 = 1 (Prop. 2.10). Therefore it factors through the induced quotient

H4/Q = M̄4 of Thm. 2.14.

Proposition 2.10. The center of H4 contains z̃2. Both sh4 and z̃2 act as the

identity on N̄i
in
r . Thus, Q acts on Ni(Ḡr,Cḡgg)

in through Q′′ = Q/〈z̃2〉.
Further, Q′′ is normal in M4. Let O be a braid orbit in Ni(G,C)in. Then, Q′′

acts through representations of the Klein 4-group on O. So, all of its orbits on O

have a common length that is 1, 2 or 4.

Assume ggg ∈ Ni(G,C)in corresponds to ϕggg : Wggg → P1
z with respect to P.

Then, for q ∈ Q′′, ϕ(ggg)q : W(ggg)q → P1
z is reduced equivalent to ϕggg.

Proof. Apply z̃2 to ḡgg = (ḡ1, . . . , ḡ4):

ḡgg
z̃−→(ḡ1ḡ2ḡ

−1
1 , ḡ1, ḡ4, ḡ

−1
4 ḡ3ḡ4)

z̃−→
((ḡ1ḡ2)ḡ1(ḡ1ḡ2)−1, (ḡ1ḡ2)ḡ2(ḡ1ḡ2)−1, (ḡ3ḡ4)−1ḡ3(ḡ3ḡ4), (ḡ3ḡ4)−1ḡ4(ḡ3ḡ4)).

Since ḡ1 · · · ḡ4 = 1, ḡ1ḡ2 = (ḡ3ḡ4)−1, the result is conjugation of ḡgg by ḡ1ḡ2. That

shows all the statements of the first paragraph, including that Q acts on Nielsen

classes through Q′′.
Now we show Q′′ is normal in M in

4 . From relations (2.13) in B4:

γ̄2
1 z̃ = q1q2q3q1q2q1 = q1(q2q3q2)q1q2

= q1(q3q2q3)q1q2 = q3(q1q2q3)q1q2(q3q
−1
3 ) = q3γ̄

2
1q
−1
3 .

and q3z̃q
−1
3 = z̃. Thus q3 normalizes Q′′. Since z̃ = q1q

−1
3 ∈ Q′′, q1 also normalizes

Q. We now show q2 does also.

RETURNM Use (q1q2)3 tildez = 1 Apply (2.13a) in the form q?1q?1q?1 = zq

q q to get 2 212 121 q?1??1q =q?1q?1q?1q q q =z(q q q )q q q =z?2. 2 2 212232

121323 Also, since z is a central involution, conjugate by q?1 to get q ?2q?1 = z??1.
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Compute the action of z̃ on ggg = (g1, . . . , g4):

ggg
q1q
−1
3−−−−−−−−→(g1g2g

−1
1 , g1, g4, g

−1
4 g3g4)

q1q
−1
3−−−−−−−−→

((g1g2)g1(g1g2)−1, g1g2g
−1
1 , g−1

4 g3g4, (g3g4)−1g4(g3g4)).

In the bottom row 2nd term (resp. 3th term) substitute g2g2g
−1
2 (resp. g−1

3 g3g3)

for g2 (resp. g3). The result is that the first two terms (resp. last two terms) are

the corresponding terms of ggg conjugated by g1g2 (resp. (g3g4)−1).

From product-one applied to ggg(????)), g1g2 = (g3g4)−1. Therefore, the result

is a conjugation by g1g2, an inner equivalence occuring in either Ni(G,C)†. That

shows the action of z̃ is trivial on Nielsen classes.

With no loss, consider Q on Nielsen classes as acting through Q′′. Since Q′′

is normal in M4, any Q′′ orbit, Om is carried to another Q′′ orbit (in O) by any

q ∈M4. This gives all Q′′ orbits in O a common length. Conclude by characterizing

the Klein 4-group as the dihedral group D2.

First, by definition of Q′′, (q1q
−1
3 )2 is trivial, as is sh2. As a group generated by

two involutions, Q′′ in its action on Nielsen classes is the dihedral group Dn, with

n the order of the action of the product of q1q
−1
3 and the sh.

The braid relation q1q2q3q3q2q1 becomes q1q2q1q1q2q1 = 1. Lemma 2.10 shows

adding these relations to B4 is equivalent to adding q2q?2 = 1 to H . This produces

new equations: 134 (2.9) q1q2q12q2q1 = (q1q2q1)2 = (q1q2)3 = 1. �

2.2.3. M̄4 subgroups; reduced fine moduli. Prop. 2.10 shows how Q′′ = Q/〈z̃〉
acts on Nielsen classes, an effect critical for what fine moduli means for reduced

Hurwitz spaces when r = 4. The two groups to keep in mind r = 4 are these:

(2.24)
Moduli Group: Q′′ def

= 〈q1q
−1
3 , sh2〉/〈z̃〉

Cusp Group: Cu4
def
= 〈q2,Q′′〉/Q′′.

(2.25a) b(irational)-fine moduli: Q′′ must act as a Klein 4-group; and

(2.25b) e(lliptic)-fine moduli: neither γ0 nor γ1 has fixed points (on O).

We have given in (2.17) reasons for using reduced spaces. Further, in (2.17b)

why the case r = 4 stands out to make comparisons with modular curves. There

are differences between r = 4 and r > 4 for fine moduli. We illustrate the outcomes

when fine moduli doesn’t hold in this section using our examples, and specifically

the case when we work over the field, R, of real numbers Ch. 3 §6.2.

Remark 2.11 (Fine moduli for r > 4). The algorithm for using the sh-incidence

matrix works for r > 4 as in Lem. 3.6. There are, though these differences. A

group like Q′′ only appears for r = 4, so the first condition of (2.25) is moot. We

still, however, have a version of condition (2.25b): existence of elliptic fixed points.

These would now would be singular on the reduced Hurwitz space, rather than just

ramified in the cover H†,rd → P1
j .
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For these singular points, each can make a contribution to not having fine

reduced moduli, a condition that we may calculate from the Nielsen class directly

using branch cycles. See §4.3.3.

Remark 2.12 (Product-one). Product-one, γ1γ2γ3 = 1, is now a consequence

of the Hurwitz braid relation

(2.26) q1q2 · · · qr−1q−1qr−2 · · · q1

combined for r = 4 with modding out by q1 = q3. That immediately gives γ2
1 = 1

in its action on reduced Nielsen classes. For γ3
0 = 1, use the braid relations

(2.27) qiqi+1qi = qi+1qiqi+1 and for |i−j| > 1 mod r−1, qiqj = qjqi.

The latter says non-contiguous braids commute.

2.2.4. Genus formula for r = 4. Thm. 2.13 allows computing properties of

reduced Hurwitz spaces when r = 4 without needing their descriptions as upper

half-plane quotients. Except for our running example of covers from dihedral groups,

as in §3.2, they aren’t modular curves, their defining subgroups are not congruence

subgroups. Therefore, they would be both hard to find, and even harder to use.

Theorem 2.13. Suppose a component, H′, of H(G,C)†,rd is given by a braid

orbit, O, on the corresponding reduced Nielsen classes Ni(G,C)†,rd. Then, the ram-

ification, respectively over 0, 1,∞, of H′ → P1
j corresponds to the disjoint cycles of

γ0 = q1q2, γ1 = q1q2q1, γ∞ = q2 acting on O.

The genus, gH′ , of H(G,C)†,rd, a la Riemann-Hurwitz, appears from

2(|O|+ gH̄′ − 1) = ind(γ0)+ind(γ1)+ind(γ∞).

We recast the proof of [BFr02, Thm. 2.9] on Thm. 2.14 combinatorial results

on H4 vs M̄4 = H4/Q in §4.2.

Theorem 2.14 (Cohomology result for Thm. 2.13).

(2.28a) The only involution in H4, z̃2 = (q1q
−1
3 )2, generates its center.

The quotient H4/〈z̃2〉 is M4.

(2.28b) Q / H4 with Q he quaternion group Q8.

(2.28c) H4/Q = M̄4
∼= PSL2(Z).

(2.28d) Exactly two conjugacy classes of H4 subgroups U1 = 〈q1, q2〉 and U2 =

〈q2, q3〉 (both containing 〈z̃〉) are isomorphic to SL2(Z).

From (2.28b), Q is the smallest normal subgroup of H4 containing either (q1q2q3)2

or q1q
−1
3 . From the braid relation defining H4 from B4, (2.26) (see Rem. 2.12)

M̄4 = 〈γ0, γ1〉 = 〈γ1, γ∞〉 is M4 modulo the relation q1 = q3.
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3. sh-incidence on reduced Hurwitz spaces

This section gives a tool for treating in detail Hurwitz spaces of reduced Nielsen

classes. Property number one for Hurwitz spaces is to detect their components. We

give two geometrically interpretable tools for that: the practical sh-incidence matrix

§3.1, and the theoretical lift invariant Ch. 3, which only appears if G has a nontrivial

Schur multiplier.

We start here two of the main examples in the book. §3.2 has the MT description

of modular curves (and their cusps). §3.3 does one example based on G = A4, that

we can use to reflect on the relation between the RIGP and the OIT. This relation

arises in MTs, appearing in all our conjectures, starting with the Main Conjecture

(3.1). Especially we use this example to illustrate Thm. 2.13 where the need to

identify the braid orbits in the Nielsen class is immediate.

Conjecture 3.1 (Main MT Conjecture). For K a number field, at high levels

there will be no K points on a MT.

Also, high levels will be algebraic varieties of general type (high powers of the

canonical bundle embed the variety in projective space) [Fr95].

3.1. sh-incidence Algorithm. The sh-incidence matrix entwines the inter-

action of the braids and the group G, showing up in invariants of components of

Hurwitz spaces by a labeling on cusps.

3.1.1. Twist orbits. Def. 3.2 gives us the most easily identified cusp orbits.

Definition 3.2. An element ggg ∈ Ni(G,C) is a Harbater-Mumford (HM) rep-

resentative if it has the form (g1, g
−1
1 , . . . , gs, g

−1
s ) (so 2s = r). A braid orbit O is

said to be HM, if the orbit contains an HM rep.

To initially address Conjecture (3.1), [Fr95] inspected the properties of the MT

for Ni(A5,C34), ` = 2 in sufficient detail that any fair observer could see there was

something substantive happening in essentially any MT. The superficial similarity

between that Nielsen class, with one braid orbit, and the A4 example below (with

two braid orbits), is belied by resulting large difference between the two of them.

Both have braid orbits with HM reps.

Lem. 3.3, for all r, lists qi orbits. Note though, one index i suffices for the

sh-incidence matrix. For historical reasons we choose i = 2.

Lemma 3.3. Let ggg ∈ Ni(G,C) be a Nielsen class representative. With µ =

gigi+1, the orbit of Qi on ggg is the collection

(ggg)qki =

{
(g1, . . . , gi−1, µ

lgiµ
−l, µlgi+1µ

−l, gi+2, . . . ) for k=2l
(g1, . . . , gi−1, µ

lgigi+1g
−1
i µ−l, µlgiµ

−l, gi+2, . . . ) for k=1+2l.

If r = 4, and ggg ∈ Ni(G,C)† is an HM rep. (g1, g
−1
1 , g2, g

−1
2 ), then so are all

elements in the Q′′ orbit of ggg. Then, the Q′′ orbit length on Oggg is 4/(m+1) with m
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the count of conjugacies, in † equivalence, given by

hg1h
−1 = g2 or g1 = hg−1

2 h−1 with h2 = 1; or h(g1, g2)h−1 = (g−1
1 , g−1

2 ).

If G (resp. NSn(G,C)) has no center (resp. element that centralizes G) for † = in

(resp. abs) then h is determined by these conditions.

Proof. The formula of the 1st paragraph comes from the definition of qi.

Similarly, if you apply q1q
−1
3 or sh2 to an HM rep, then it is immediate the result

is another HM rep.

Now consider the Q′′ orbit length, which is 4 divided by the number of elements

q ∈ Q′′ for which (ggg)q = hgggh−1 for some h ∈ G (resp. h ∈ NSn(G,C) if † = in

(resp. † = abs). The cases are similar, so we will just do the 1st.

If h2 = 1 for which g1 = hg2h
−1, then g−1

1 = hg−1
2 h−1 and

h((ggg)sh2)h−1 = h(g2, g
−1
2 , g1, g

−1
1 )h−1 = ggg.

If h1, h2 both satisfied these conditions then h1h
−1
2 would commute with ggg, con-

trary to the centralizing assumption. Either one or all three of those conditions are

satisfied. Add that number to 1 (for the trivial element in Q′′) to get m. �

Remark 3.4. General expectation from Lem. 3.3 is that Q2 orbits would have

length 2 · ord(gigi+1)
def
= 2o. There is an important exception – Ch. 6 Prop. 2.1 –

for which the orbit length (even without concerns about centralizers) is half that

expectation. The first condition is that o is odd. It applies to §3.2 and to the cusp

labeled cO
3
1,3 in the Ni+0 block of 2.

3.1.2. Listing cusps for the sh-incidence matrix. Def. 3.5, the sh-incidence ma-

trix, is invaluable to compute braid orbits on specific reduced Nielsen classes.

For, S, a set of representatives in Ni(G,C) and any equivalence relation • on

the Nielsen class, denote by Sq2,• (resp. Ssh,•) the collection of • equivalence classes

of q2 (resp. sh) orbits.

We have been using O for braid orbits on a Nielsen class. For q2 (cusp) orbits the

notation will be cO, with the understanding that •-equivalence has been specified.

If r = 4 and • is one of the reduced equivalences, then sh has order 2, thereby

producing a symmetric matrix.

Definition 3.5. List •-equivalence classes, cO1, . . . , cOu, of q2 (cusp) orbits.

The sh-incidence matrix A(G,C) has (i, j) term |(Oi)sh ∩Oj |.

Denote the transpose of an n × n matrix by trT . Equivalence n × n matrices

A and TAtrT running over permutation matrices T associated to elements of Sn.

Refer to a matrix A as in block form if there are matrices B1, . . . , Bu, for which

A has the form of a u × u diagonal matrix with diagonal entries B1, . . . , Bu. The

proof of Lem. 3.6 is an algorithm. Rem. 3.8 and Rem. 3.10 have extra comments.
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Lemma 3.6. For some T , A(G,C) is in block form with the block rows (and

columns) labeled by cusp orbits whose union of elements consists of a single braid

orbit on Ni(G,C) under •-equivalence.

Proof. Start with any q2 orbit and label it cO1,1. Then form the sequence

(2.29) cO1,1 → (cO
sh,•
1,1 )q2,• → (((cO

sh,•
1,1 )q2,•)sh,•)q2,• . . .

until the sequence stops. The result will be a union of distinct q2 orbits under

•-equivalence.

Denote this collection by cO1 = {cO1,1, . . . , cO1,b1}. Since Hr = 〈q2, sh〉, to-

gether cO1 contains all elements – modulo •-equivalence – in the Nielsen class that

are in the Hr orbit of any element of cO1,1.

Label the rows and columns of the first block of your matrix, B1, by the elements

of cO1. In step 1 of (2.29) you iterate applications of sh on cO1,1 and check for all

new q2 orbits. The (i, j)-entry is |(cO1,i)sh ∩ cO1,j |. Call cOi and cOj neighbors if

|(cO1,i)sh
t ∩ cO1,j | is nonzero for some t. If the process stops after one step, then

all q2 orbits are neighbors of cO1,1. In step 2 you do the same thing to any of the

new q2 orbits, etc., until you stop getting new q2 orbits. The resulting sh-incidence

matrix is obtained from a maximal sequence of neighbors.

Therefore, this gives exactly one block,B1 as described in the opening paragraph

of the lemma. If further q2 orbits in the Nielsen class haven’t been used, then

start again until you have used them all. Eventually you get blocks B1, . . . , Bu

corresponding to unions of q2 orbits cO1, . . . , cOu. �

3.1.3. r = 4 and finishing the computation.

Lemma 3.7. Now assume r = 4, and •-equivalence is one of the reduced equiv-

alences, so q2 orbits are γ∞ orbits. Then the sh-incidence matrix is symmetric.

Replacing sh by either γ0 or γ1 acting on γ∞ orbits gives the same blocks in the

resulting matrix. Then, fixed points of γj, j = 0 or 1, on any M̄4 orbit give nonzero

entries along the diagonal of the corresponding block. Then,

|(cO1,t)sh ∩ cO1,t′ | = |(cO1,t)sh
2 ∩ (cO1,t′)sh| = |cO1,t ∩ (cO1,t′)sh|.

That shows the final matrix in block form, has each block symmetric.

Proof. Take r = 4 and for •-equivalence one of the reduced equivalences,

where sh2 is the identity on braid orbits.

Use that on reduced classes q1 = q3, with relation (2.13), q1q2q1 = q2q1q2. Now

consider what happens if we replace sh by γ1 represented by q1q2. Since we start

with a q2 orbit, say cO, the collection with sh applied is given by

(cO)sh = (cO)q1q2q1 = (cO)q2q1q2 = (cO)q1q2.
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That shows the matrix is the same with γ0 replacing sh. Of course, γ1 is sh. That

finishes the proof of the lemma. �

Remark 3.8 (The algorithm-Part 1). Regard the sequence of expression (2.29)

as iterated steps – it shows two steps – in computing one braid orbit on the •-
equivalence classes on Ni(G,C). Our examples often have one step.

Notice in our Ni(A4,C+32−32) example §3.3, the seed for each braid orbit –

respectively an HM rep. Def. 3.2, and a D(ouble)I(dentity) rep. – end up giving

their Hurwitz space components corresponding monikers.

It makes sense to list q2 orbits, referring to the blocks, as

cO
w1,1

1,1 , . . . , cO
w1,b1

1,b1
, cO

w2,1

2,1 , . . . , cO
w2,b2

2,b1
, . . . , cO

wu,1
u,1 , . . . cO

wu,bu
u,bu

,

with the superscript wi,j the cusp width (cusp orbit length). Still, should there be

more than one step, labeling within any one block probably should correspond to

the step in which it appears. Especially if the seed orbit has been chosen well.

Lemma 3.9. For r = 4, in the ith block of the sh-incidence matrix, we can read

off the degree of the component H̄i over P1
j as

∑bi
j=1 wi,j. Further,

wi,j =

bi∑
k=1

|(cOi,j)sh ∩ Oi,k|, j = 1, . . . , bi.

Proof. This follows by recognizing the cusps as the q2 orbits on the ith braid

orbit of the Nielsen classes under reduced equivalence. This is a piece of the proof

of Thm. 2.7. The rest is from the combinatorics of the sh-incidence matrix. �

Remark 3.10 (The algorithm-Part 2). Fixed points of γ0 or γ1 on a reduced

orbit imply that the reduced Hurwitz space component does not have fine moduli.

We can almost read that data off directly from the sh-incidence matrix. If there

are no nonzero diagonal elements corresponding to that block in Lem. 3.6, then

for certain γ0 or γ1 have no fixed point, and then the only test necessary for fine

moduli is that Q′′ acts on that orbit as a Klein 4-group.

Yet, if there diagonal elements aren’t all 0, there may, or not, be γ0 or γ1 fixed

points. Both cases occur in the Ni(A4,C±32) §3.3. That illustrates many part 3

topics of the book. Before that, though, §3.2 returns to modular curves.

3.2. Dihedral Ex. 2.7 continued. We lay out – extending [Fr78, §2] – the

cusps on the one braid orbit on Ni(D`k+1 ,C24)
def
= Nik.

3.2.1. Listing the cusps for Niink . For a given ggg ∈ Niink , conjugate by
(

1 a1/2
0 1

)
to assume g1 =

( −1 0
0 1

)
. For ggg ∈ Niabs

k , conjugate by
(
α 0
0 1

)
, α ∈ (Z/`k+1)∗ to

assume a2−a3 = `u, u ≥ 0:

(2.30)
(
α 0
0 1

)( −1 a′

0 1

)(
α−1 0

0 1

)
=
( −1 αa′

0 1

)
.
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(2.31a) Show conjugating by Hu = {α ≡ 1 mod `k+1−u} in (2.30) has no effect

on a2−a3.

(2.31b) (a2, a3) = (1, 1) (resp. (0, 1)) gives a length 1 (resp. `k+1) q2 orbit on

Niabs,rd
k , an example of Rem. 3.4.

(2.31c) With a2 − a3 = `u, 1 ≤ u ≤ k, follow the steps of Prop. 3.11 to count q2

orbits (cusps), and their widths, on Niabs,rd
k .

(2.31d) Use (2.31b) to show Table 1 is the sh-incidence matrix for Niabs,rd
k . Con-

clude: |Niabs,rd
k | = |Niabs

k |: Q′′ action is trivial.

(2.31e) Modify (2.31d) to Niin,rdk : that |Niin,rdk | = |Niink | and we can braid (Rem. 3.9)

all the outer automorphisms from (Z/`k+1)∗/〈±1〉.

Hint for (2.31d): From Table 1 – one component of the sh-incidence matrix –

you need only test the action of Q′′ on an HM rep.

Hint for (2.31e): See what happens with the HM rep. in (2.31b).

3.2.2. sh-incidence for Niabs,rd
k . Continue notation for (2.31c).

Proposition 3.11. For u > 0, 〈ggg〉 = D`k+1 implies (a2, `) = 1. Conjugating

by Hu assures cOggg has Nielsen class reps. with distinct 2nd entries, a2 + m`u

mod `k+1−u. Denote (Z/`k+1−u)∗mod (additive) translate by `u byL∗,+k+1,`u .

Let uggg have a2 = 1 and a3 = 1− `u. Use:

(2.32) (uggg)ql2 corresponds to the pair (a2, a3) = (1 + l`u, 1 + (l − 1)`u).

Consider the subgroup Su ≤ Hu stabilizing (2.32). Then, |Su| = `min(u,k+1−u).

This gives a q2 orbit of length `k+1−u/`min(u,k+1−u). Each u, 1 ≤ u ≤ k con-

tributes ϕ(`u)/|Hu| orbits of q2 of this length.

(2.33a) Cusps corresponding to u are cO`k+1−2u,a, a ∈ L∗,+k+1,`u .

(2.33b) For 0 ≤ u ≤ k−1
2 , cusps have widths k+1−2u; and

(2.33c) for 0 ≤ k+1
2 ≤ u ≤ k+1, cusp have width 1.

Table 1. sh-incidence for Ni(Dpk+1 ,C24)abs,rd listings for cO`k+1−2u,a

Cusp orbit u = 0
a∈L∗,+

k+1,`u

1≤u≤[ k+1
2 ]

a∈L∗,+
k+1,`u

[ k+3
2 ]≤u≤k+1

u = 0 `k+1 − `k `k+1−2u 1
a∈L∗,+

k+1,`u

1≤u≤ k+1
2

`k+1−2u 0 0

a∈L∗,+
k+1,`u

k+3
2 ≤u≤k+1

1 0 0

Remark 3.12. [Sh94, p. 25] has the traditional way to compute X0(`k+1) cusp

data. Note: In (2.31b), an HM rep. (from (a2, a3) = (0, 1)) gives the longest q2

orbit. Its shift gives the shortest q2 orbit.
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Remark 3.13. Above, Q′′ acts trivially on inner (and so absolute) Nielsen

classes. As these Nielsen classes have modular curves as their reduced spaces, maybe

that is why Q′′ has not appeared in studies of modular curves. Still, failure of b-fine

moduli (as in (2.25)) for both is the same: a Klein 4-group in PSL(C) stabilizes any

four distinct points on P1
z as in Thm. 2.7 (especially its proof Ch. 6 §4.1).

3.3. sh-incidence on Ni(A4,C±32)in,rd. We now look at level k = 0 for ` = 2

of Ch. 5 (which illustrates generalizing Serre’s OIT). Let α act on (Z)2 as
(

0 1
−1 −1

)
(of order 3). Take the induced action on (Z/2)2, and regard α as a generator of

Z/3, as a multiplicative group. Then,

(2.34) A4 = (Z/2)2 ×sZ/3 =
{(

αj (x,y)
0 1

)
} | j ∈ Z/3, (x, y) ∈ (Z/2)2

}
,

as in the semi-direct product (left action of α) notation of Ch. 1 Def. 1.6. In that

general case, we will be using this matrix notation with α0 =
(
α 000
0 1

)
.

In, however, §3.3.1, we use permutation notation (right action on {1,2,3,4}),
with α0 = (1 2 3) ∈ A4 the special representative of α. We also have A4 ≤ A5, used

below, as in Lem. 3.14.2

3.3.1. Describing elements in a particular Nielsen class. The Nielsen class we

want is Ni(A4,C±32)in,rd, where C+3 (resp. C−3) is the class of α (resp. α−1) and

C±32 means the collection repeats each class twice. Therefore, it is a rational union

of conjugacy classes. So, it defines Hurwitz spaces over Q from the BCL (Lem. 4.1).

Here is what to excect of the example.

(2.35a) The reduced Hurwitz space has two components, labeled H±0 , from braid

orbits Ni±0 appearing from the sh-incidence matrix.

(2.35b) Both Hurwitz space components have fine moduli. The reduced space H+
0

has fine reduced moduli (§2.2.3), while H−0 does not.

(2.35c) The genuses of both H̄±0 are 0.

(2.35d) Neither component is a modular curve, but we can compute their arith-

metic and geometric monodromy as j-line covers.

Comment on (2.35b): Fine moduli for inner Hurwitz spaces in this case comes

from A4 having no center Ch. 1 Lem. 2.3. The check for reduced fine moduli on a

braid orbit O for has two steps [BFr02, §4.3.1]: (2.25a), Q′′ acts as a Klein 4-group;

and (2.25b), neither γ0 nor γ1 has fixed points (on O).

Comment on (2.35c): To conclude Main MT conj. 3.1 for this MT requires going

to higher levels to assure component genuses rise beyond 1. Each component has

2In Serre’s OIT the primes ` = 2 and 3 have slightly different behavior than the other primes.
That happens, too, in our example. In both, we uniformly compare these with the lift invariant

and the concept eventually `-Frattini.
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2-cusps (respectively labeled cO
4
1,1 and cO

4
2,1 Table 2. So, it requires more work to

establish the explicit rise of genus, but this is the crucial hypothesis of [Fr06, §5].

Comment on (2.35d): In Prop. 3.16 we see there is a natural one-one map from

H+,in
0 to H+,abs

0 , though as moduli spaces they are very different, a difference far

less subtle than that referred to in Rem. 3.13 as it involves the very large difference

between the jacobians of the curves in their respective moduli [BFr02, §E.2.2],

which we revisit in §1.1.1.

List possible parity sequences from C±3 in Ni(A4,C±32)in,rd:

[1] + - + - [2] + + - - [3] + - - +
[4] - + - + [5] - - + + [6] - + + -

These are useful observations.

(2.36a) By applying q ∈ Q′′, assume that a reduced representative of an orbit has

(1 2 3) as its first entry: Is in {[1], [2], [3]}.
(2.36b) To check if (i j k) should be a + or −, conjugate by any g ∈ S4 that takes

it to (1 2 3) and check if g has + or - parity.

3.3.2. Cusps and the sh-incidence matrix. Again, list cusps as cO
k
i,j : k is the

cusp width, and i, j as in Rem. 3.8, corresponds to a labeling of orbit representatives.

The following elements are in a Harbater-Mumford component (3.2).

HM rep. for cO
4
1,1: ggg1,1 = ((1 2 3), (1 3 2), (1 3 4), (1 4 3))

HM rep. for cO
3
1,3: ggg1,3 = ((1 2 3), (1 3 2), (1 4 3), (1 3 4))

sh of HM rep. for cO
2
1,2: ggg1,2 = ((1 2 3), (1 2 4), (1 4 2), (1 3 2)).

Consider g2,1 = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)) ∈ [2]. Its γ∞ orbit cO
4
2,1 is what

§3.1.2 calls D(ouble)I(dentity): named for repeated entries in g2,1 (positions 3 and

4). The same for the seed of the DI cusps cO
1
2,2 and cO

1
2,3 (positions 2 and 3).

In Table 2, each cusp orbit has an element with entries (g, g−1) or with entries

(g, g): the former in braid orbit Ni+0 , the latter in braid orbit Ni−0 .

Table 2. The two sh-incidence blocks on Ni(A4,C±32)in,rd.

Ni+0 Orbit cO
4
1,1 cO

2
1,2 cO

3
1,3

cO
4
1,1 1 1 2

cO
2
1,2 1 0 1

cO
3
1,3 2 1 0

Ni−0 Orbit cO
4
2,1 cO

1
2,2 cO

1
2,3

cO
4
2,1 2 1 1

cO
1
2,2 1 0 0

cO
1
2,3 1 0 0

Prop. 3.16 explains the two blocks – each one step (of (2.29)) – of the sh-

incidence matrix on Ni(A4,C±32)in,rd. This is our first use of the lift invariant. We

need the Frattini central extension of A4, for which the following is convenient:

(2.37) Pullback of A4 ≤ A5 to SL2(Z/5)→ PSL2(Z/5) = A5.
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For g ∈ C±3, ĝ is the (unique) order 3 lift to ψ : Â4 → A4, for the cover in (2.37).

This is a case (for r = 4) of Def. 1.4 where we are computing

The restricted lift invariant relative to ψ of the Oggg braid orbit of ggg:

sψ(ggg)
def
= sψ(O) =

∏r
i=1 ĝi

def
=
∏

(ĝgg) running over braid components.

3.3.3. Preliminary on the lift invariant. Regard ker(ψ) as {±1}. If sψ(Oggg) =

+1, we say it has trivial lift invariant. To compute sψ(O), we will compare Ni(A4,C±32)

with an auxiliary Nielsen class, Ni(A4,C+33): 3 repeats of the class C+. Note: C+33

is not a Q rational union: C−1
+3 = C−3.

Lemma 3.14. If ggg ∈ Ni(A4,C±C2)) is an HM rep., then sψ(Oggg) = +1.

There is a lift invariant preserving correspondence between

ggg′ = (g′1, g
′
2, g
′
3) ∈ Ni(A4,C+33) and DI reps.

1,4ggg = ((g′1)−1, g′2, g
′
3, (g

′
1)−1) ∈ Ni(A4,C±32).

Then, sψ(Oggg′) = sψ(O
1,4ggg) = −1 and O

1,4ggg contains no HM reps.

In place of 1,4ggg we could also use

1,2ggg = ((g′2)−1, (g′2)−1, g′3, g
′
1) or (1,3ggg)q−1

2 = ((g′2)−1, (g′2)−1g′3g
′
2, (g

′
2)−1, q′1),

or other variants placing the doubled pair wherever we want.

Proof. Assume generation, 〈g1, g3〉 = A4, for ggg = (g1, g
−1
1 , g3, g

−1
3 ) ∈ C±32 .

Then, the lift invariant is the product of the entries in (ĝ1, (ĝ1)−1, ĝ3, (ĝ2)−1). In

multiplicative notation, the lift invariant is trivial for any HM rep.

Now consider ggg′ = (g′1, g
′
2, g
′
3) ∈ Ni(G`,C33). In place of g′3 put

((g′3)−1, (g′3)−1) for the reversible correspondence in the Lemma.

Since ĝ1 has order 3, ĝ−1
1 ĝ−1

1 = ĝ1 is the unique order 3 in Â4 over g1 (easy

Schur Zassenhaus). So, sψ(ĝgg′) = ĝ′1ĝ
′
2ĝ
′
3 ∈ ker(ψ) is the same as

(ĝ′1)−1ĝ′2(ĝ′3)−1(ĝ′1)−1 = sψ(1,4ggg).

Now we list two different ways to prove this is -1.

(2.38a) Direct computation: Find α1 of order 3 in SL2(Z/5) over (1 2 3). Then,

find a conjugate, α2, of α1 over (1 3 4) (see Rem. 3.15).

(2.38b) Fried-Serre formula: Use that covers in Ni(A4,C+33)abs have genus 0. So

the lift invariant is (−1)3 (as in Ex. 2.10).

Notice there is no problem with the variants on the DI elements; we can braid

between them as we did between 1,2ggg and 1,3ggg in the statement of the lemma. �

Remark 3.15 (More on sψ in Lem. 3.14). Hint on (2.38a): Compute α1α2

and check its order (it should be 6). Here, where ` = 2, the 2-Sylow in Â4 is the

quaternion group Q8, not the small Heisenberg group (whose elements for ` = 2 all

have order 2) giving the lift invariant in the other cases of Ch. 5 §3 for ` > 3.
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3.3.4. Properties of both H4 orbits on Ni(A4,C±32)in,rd). Prop. 3.16 has sepa-

rated the HM and DI components, using the notation H+
0 and H−0 for the braid

orbits that contain the corresponding cusp types. We treat each separately after

stating Prop. 3.16 by referring to the HM cusps and the DI cusps.

Proposition 3.16. On Ni(Â4,C±32)in,rd (resp. Ni(A4,C±32)in,rd) H4/Q′′ has

one (resp. two) orbit(s). So, H(Â4,C±32)in,rd (resp. H(A4,C±32)in,rd) has one

(resp. two) component(s), Ĥ+
0 (resp. H±0 ).

Conclusions on the inner reduced space H+
0 = H+,in,rd

0 :

(2.39a) H̄+,in,rd
0 → P1

j has degree 9, the space has genus 0, and there are cusps of

width 4, 3 and 2 (over ∞).

(2.39b) Φin,rd
abs,rd : H+,in,rd

0 → H+,abs,rd
0 is one-one, though the former (resp. latter)

is moduli of genus 5 (resp. genus 1) covers.

(2.39c) H(Â4,C±32)in,rd maps one-one to H+
0 (despite the spaces having different

moduli).

(2.39d) H+,in,rd
0 fails both tests in (2.25) for reduced fine moduli.

Conclusions on the inner reduced space H−0 = H−,in,rd0 :

(2.40a) H̄−,in,rd0 → P1
j has degree 6, the space has genus 0, and there are 2 cusps

of width 1 and one of width 4 (over ∞).

(2.40b) Φin,rd
abs,rd : H−,in,rd0 → H−,abs,rd

0 is two-one.

(2.40c) There is nothing on H(Â4,C±32)in,rd over H−0 .

(2.40d) H−,in,rd0 fails the b-fine moduli test in (2.25) but neither γ0 or γ1 have

fixed points.

HM cusps: First consider the braid orbit containing all HM reps. All 3-cycles in

A4 are conjugate in S4. Thus, for inner equivalence, assume an HM rep. is

ggg1 = ((1 2 3), (1 3 2), g, g−1) or ggg2 = ((1 3 2), (1 2 3), g′, (g′)−1).

Appying q1q
−1
3 shows ggg1 is correct up to reduced equivalence. Since g must contain

4, after conjugation by (1 2 3) (inner equivalence) it is (1u 4) with u = 2 or 3.

So, there are just two reduced inequivalent HM reps. whose orbits are repre-

sented by ggg1,1 and ggg1,3. Conjugate by (1 3)(2 4), as in Lem. 3.3, to see sh2 fixes ggg1,1,

and the M̄4 orbit does not have b-fine reduced moduli.
Here are representatives of the inner reduced q2 orbits (Lem. 3.3) on the three

representatives in HM braid orbits we have already selected above Table 2 in the
form ((1 2 3), •, •, •). The display indicates the •s in the 2nd and 3rd positions (with
the 4th determined by product-one).

cO
4
1,1 : ggg1,1 = ((1 3 2), (1 3 4)), ((1 4 2), (1 3 2)), ((4 2 3), (4 2 1)), ((4 1 3), (4 2 3))

cO
2
1,2 : ggg1,2 = ((1 2 4), (1 4 2)), ((1 4 2), (1 2 4))

cO
3
1,3 : ggg1,3 = ((1 3 2), (1 4 3)), ((2 4 1), (1 3 2)), ((1 4 3), (1 2 4))
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We show these representatives give the three q2 orbits in one (inner) reduced

braid orbit, and the Ni+ block is their sh-incidence matrix. Notation for the ele-

ments in a q2 orbit is helpful. For example, starting with ggg1,1 iterates of q2 on it

(Lem. 3.3) give jggg1,1, j = 0, 1, 2, 3 indicating the power of the iterate. With that,

connect cO2
1,2 and the other two orbits by

(0ggg1,2)sh = ((1 2 4), (1 4 2), (1 3 2), (1 2 3))
µ−→ 0ggg1,1

(1ggg1,2)sh = ((1 4 2)(1 2 4), (1 3 2), (1 2 3))
µ′−→ 0ggg1,3.

with µ (resp. µ′) given by q1q
−1
3 followed by conjugation by (1 4)(2 3) (resp. (3 2 1)).

That shows the only possible entries in the 2nd row (and column) of Ni+0 .

Now look at the entries for (cO
3
1,3)sh ∩ cO

4
1,1 with µ∗ = sh2q−1

1 q3:

(1ggg1,3)sh = ((2 4 1), (1 3 2), (1 3 4), (1 2 3))
µ∗−−→ 1ggg1,1

(2ggg1,3)sh = ((1 4 3), (1 2 4), (1 3 4), (1 2 3))
µ∗−−→ 2ggg1,1.

That leaves 3ggg1,1 as the only point whose shift is unaccounted, implying it is

fixed by γ1, the shift. That concludes describing the component denoted Ni+0 .

We read off the cusp widths and sum them for the total degree of the compact-

ified space over P1
j , thus concluding H̄+ has degree 9 over P1

j . From Thm. 2.13,

Ex. 3.17 computes from the sh-incidence matrix the component genus as 0.

It also shows (2.39d): Ni+0 fails both conditions in (2.25) for fine reduced moduli.

Since sh2q1q
−1
3 takes ggg1,1 to ((1 4 3), (1 3 4), (1 3 2), (1 2 3)) which is conjugate to ggg1,1

by (2 4), two distinct inner HM reps are equivalenced by Q′′.
This is exactly why Φin,abs has degree 2: from NS4(A4,C±3)/A4 = Z/2 as in

Prop. 3.1 and especially in (1.38).

Yet, the reduced version of the map is one-one, concluding (2.39b). It is a simple

matter to compute the genuses of the covers in the resp. inner and absolute classes.

Refer to the genus for the former as gA4,in and the latter as gA4,abs from the formulas

2(12+gA4,in − 1) = 4 · 4 · 2,gA4,in = 5 vs
2(4+gA4,abs−1) = 4 · 2,gA4,abs = 1.

Lem. 3.14 shows (2.39c) and (2.40c) together once we know Ni−0 is the single

braid orbit containing all DI cusps, which we show below.

DI cusps: Now I go to the DI orbit to check elements fixed by Q′′. We can do

what we did above with the HM cusps, to assume for, say, (g1, g2, g, g) that g is

either (1 2 4) or (1 2 3). We also see clearly representatives of the two width one DI

orbits by putting ((1 2 4), (1 2 4)) and ((1 2 3), (1 2 3)) in the 2nd and 3rd positions.
Now we show how quickly we find the full braid orbit in one (2.29) step by

forming gggq2,•2,1 in the first column (with ggg2,1 at the top), and then, in turn, sh to
each term to get the second column.

ggg2,1 = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)) sh→ggg2,3 = ((1 3 4), (1 2 4), (1 2 4), (1 2 3))
(ggg2,1)q2 = ((1 2 3), (2 3 4), (1 3 4), (1 2 4)) sh→ ((2 3 4), (1 3 4), (1 2 4), (1 2 3))
(ggg2,1)q

2
2 = ((1 2 3), (1 2 3), (2 3 4), (1 2 4)) sh→ggg2,2 = ((1 2 4), (1 2 3), (1 2 3), (2 3 4))

(ggg2,1)q
3
2 = ((1 2 3), (1 2 4), (1 2 3), (1 2 4)) sh→ ((1 2 4), (1 2 3), (1 2 4), (1 2 3))
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In the 2nd row, we used sh−1, but that is sh modulo Q′′. Finally, apply q−1
1 q3 ∈ Q′′

to the (4th row, 2nd column) to see we get the (2nd row,1st column).

That is, sh switches the 2nd and 4th terms of cO
4
1,1. We have filled in everything

in Ni−0 . This shows there are no fixed points of γ0 or γ1 in the Ni−0 cusp orbits, but

you immediately see from computation that sh2q1q
−1
3 fixes the DI elements in the

length 1 cusps. This shows (2.40d).

To see that we have included all cusp orbits in Ni+0 and Ni−0 , apply elements of

Q′′ to count elements of shape + + −−. Then, up to inner equivalence count the

4-tuples that start ((1 2 3), (1 2 3)) and those that start ((1 2 3), (1 3 4)), modulo the

action of q1q
−1
3 and conjugation by (1 2 3)).

Example 3.17 (Component genuses). Use (γ0, γ1, γ∞) from the sh-incidence

calculation in Prop. 3.16. Denote their restrictions to lifting invariant +1 (resp. -1)

orbit by (γ+
0 , γ

+
1 , γ

+
∞) (resp. (γ−0 , γ

−
1 , γ

−
∞)).

We read indices of the + (resp. −) elements from the Ni+0 (resp. Ni−0 ) matrix

block. Fixed points of γ0 and γ1 appear on the diagonal. Diagonal entries for O4
1,1

and O4
2,1 are nonzero:

γ1 (resp. γ0) fixes 1 (resp. no) element of O1,1.

Neither of γi, i = 0, 1, fix any element of O4
2,1.

Cusp widths over ∞ add to the degree 9 (resp. 6) to give

ind(γ+
0 ) = 6, ind(γ+

1 ) = 4, ind(γ+
∞) = 6

ind(γ−0 ) = 4, ind(γ−1 ) = 3, ind(γ−∞) = 3.

From RH, the genus, g± of H± is 0: 2(9 + g+ − 1) = 6 + 4 + 6 = 16 and

2(6 + g− − 1) = 4 + 3 + 3 = 10. 4

4. The Branch Cycle Lemma

At the center of applying Hurwitz spaces to problems in number theory is

the definition field for them and their components as moduli spaces. That means

not just the Hurwitz space, say, H(G,C)† (or related), but the natural structure

parametrized by the Hurwitz space – giving it its moduli space structure – is de-

fined over that field. Notation will reference a particular component or collection

of components of the space.

Example: In Prop. 4.1, Q(G,C)in is that definition field for the whole inner

Hurwitz space structure of covers in Ni(G,C)in. [Fr77, p. 62–64] calls Prop. 4.1 the

Branch Cycle Argument. Yet, as exposited here it is a general idea; thus, we refer

to its version for † = in or abs on Hurwitz spaces as

The B(ranch)C(ycle)L(emma).
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The organizing principle of [Fr77, Thm. 5.1]: That is the first formula for

finding covers (resp. RIGP realizations) over a given field K. It equivalences that

to fnding points in Habs(K) (resp. Hin(K)) over K in the corresponding Nielsen

class Ni(G,C)abs (resp. Ni(G,C)in). The condition is that K contains the moduli

field of the Hurwitz space. Further, if that holds:

(2.41)
a K point ppp ∈ Habs(K) (resp. p̂pp ∈ Hin(K))

gives such a cover if the Hurwitz space has fine moduli.

Notation, as in comments on Cor. 4.7, will distinguish the moduli definition fields

of Hurwitz spaces components when the Hurwitz space has several components.

Beyond the BCL: §4.2 proves the BCL. §4.2.3 addresses Nielsen classes, espe-

cially when r ≥ 4, with several components. It raises issues on extending Nielsen

class moduli to component distinguishing moduli, in particular to capture its cor-

responding moduli definition field.

§4.3 has preliminary examples. In §4.3.1, the Hurwitz space (even with its map

to the configuration space) can be defined over Q. Yet, no component total space

structure (so no cover in the Nielsen class) has definition field Q. Reference to the

Hurwitz space definition field means – unless otherwise said – as a moduli space.

4.1. The BCL formula. §4.1.1 gives the cyclotomic fields that will be the

definition fields of Hurwitz spaces – as moduli spaces – purely in terms of Nielsen

classes. §4.1.2 gives a general context for the moduli definition field attached to a

particular equivalence class E for a moduli problem †. We apply it to E, a Nielsen

class, under † equal to inner or absolute equivalence in §4.1.3 showing the correct

cyclotomic moduli definition fields.

4.1.1. Absolute and inner cyclotomic fields. Denote the least common multiple

of all elements of C by NC.

Use this canonical NCth root of 1, e
2πi
NC = ζC, and denote K(ζC) by CycK,C.

Recall: G(CycQ,C/Q) = (Z/NC)∗, invertible integers mod NC. Then, the sub-

group fixed on K ∩ CycQ,C is G(CycK,C/K). For † = in, define Qin
G,C to be the

fixed (cyclotomic) subfield of CycQ,C of the following group:

(2.42) {m ∈ (Z/NC)∗ | {gm | g ∈ C} def
= Cm = C}.

Note: Qin
G,C = Q precisely when C is a rational union of classes (Ch. 1 Def. 1.4).

Similarly, define QG,C,T
def
= Qabs

G,C (if T is understood) to be the fixed field of

(2.43) {m ∈ (Z/NC)∗ | ∃h ∈ NSn(G,C) with hCmh−1 = C}.

Recall fine moduli as in Lem. 2.3 for our equivalences:

for † = abs, (G,T ) is self-normalizing; and for † = in, G is centerless.

Write Ni(G,C, T )abs def
= Ni(G,C)abs.
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Proposition 4.1. The field Qin
G,C (resp. Qabs

G,C) is a subfield of any defini-

tion field for any cover in Ni(G,C)in (resp. Ni(G,C)abs). If fine moduli holds for

H(G,C)abs, then a representing cover, ϕppp : Xppp → P1
z satisfies (2.44).

(2.44a) ϕppp has definition field Qabs
G,C(ppp); any cover equivalent to ϕppp has definition

field an extension of Qabs
G,C(ppp); and

(2.44b) if ϕ′ppp, defined over Qabs
G,C(ppp), is abs-equivalent to ϕabs

ppp , then it is equivalent

to it over Qabs
G,C(ppp).

Similarly, for fine moduli († = in), except substitute Qin
G,C for Qabs

G,C, and each

element of the automorphism group of the Galois extension – with a fixed isomor-

phism with G, up to conjugacy by G – has Qin
G,C(ppp) as definition field.

§4.1.2 gives a context for the idea of moduli definition field. Then, §4.1.3 adds

fine moduli to it. §4.2 shows the postulates of (2.46) apply to the various moduli

of Hurwitz spaces, thereby giving the proof of the BCL.

Remark 4.2. More generally, apply σ ∈ GQ̄ to a specific cover ϕ : X → P1
z over

Q̄, with the branch point set zzzϕ fixed by σ. Assume we have two pieces of data:

(2.45a) nσ ∈ (Ẑ)∗, the restriction of σ to the cyclotomic closer of Q; and

(2.45b) the permutation by σ of the individual points in zzzϕ.

The BCL then nails the Nielsen class of the resulting cover (ϕσ, Xσ). For K = R,

as in [DFr90], it does better: labeling precisely all real and complex points on a

given Hurwitz space, as discussed in [BFr02, §3.2].

4.1.2. Context for moduli definition field. Consider some defining property of

equivalence classes of algebraic objects (varieties, diagrams of covers, . . . ). Call this

†. For each †-equivalence class, E, we assume there is a quasi-projective variety H†E
whose points ppp ∈ H†E correspond to equivalence classes of objects Oppp ∈ E. Not only

must there be a natural operation of GQ on (†, E), but we must assure that GQ

respects (the moduli properties of) (†, E).

Definition 4.3. In addition to the GQ action above, assume for σ ∈ GQ, if

ppp ∈ H†E(Q̄), those objects Oppp ∈ E defined over Q̄ go by σ to objects representing

pppσ ∈ H†
σ

Eσ . We then say GQ respects (†, E).

Families of representations objects: Denote the Zariski or étale topology (de-

pending on circumstances) on HE by TopE . Assume we also have the following.

(2.46a) For each ppp ∈ H†E(Q̄), some representing object Oppp is defined over Q̄ (say,

by applying Lem. 1.1).

(2.46b) Extending (2.46a), for σ ∈ GQ, Oσpppσ is a representing object for pppσ ∈ H†
σ

Eσ .
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(2.46c) Each ppp ∈ H†E has a neighborhood Uppp ∈ TopE with nonempty families FU :

Each F ∈ FU comes with a flat quasi-projective map F → U with fiber

at each ppp′ ∈ U representing the E class of ppp′.

(2.46d) The collections {FU | U ∈ TopE} form a presheaf from natural maps

FU → FV for V → U .

The maps in (2.46d) come from pullback, say, when V is a cover (or open subset)

of U , as explained in §4.3.2. Our families are so explicit, from such tools as §3.1.1,

that may use them to approach moduli by nontrivially illustrating their properties.

Fine moduli means there is an object in F (H†E), unique up to a natural equivalence,

that induces a similar object in F (U), U ∈ TopE .

Especially important is finding explicitly the following notion of a moduli defi-

nition field, Q†E , for E.

(2.47)
For each ppp ∈ H†E , any definition field for Oppp contains Q†E(ppp).

If E has fine moduli, some Oppp has definition field Q†E(ppp).

Of course, when Q†E = Q, a common target is ppp ∈ H†E(Q), thereby realizing Oppp

over Q when fine moduli holds. Much remains of the RIGP precisely because we

haven’t located for every G, C with H(G,C)in(Q) nonempty. In examples, when

.H(G,C)in has several components, we sometimes need the following.

(2.48a) For a given (†, E) identify the irreducible componentsH′1, . . . ,H′k ofH†E(Q).

(2.48b) Restrict the presheaf of (2.46d), and for any GQ†E
orbit,H′′ onH′1, . . . ,H′k,

identify a(n E extending) moduli characterization E′′ for this orbit.

(2.48c) For each orbit H′′ in (2.48b), and each component, say, H′j , find a field

extension L′j/Q
†
E as an H′j replacement for Q†E applied to H†E .

Remark 4.4 (Comment on (2.48)). The L′j s are conjugate fields running over

the components of H′′ in (2.48c).

The notion of moduli field works: For any ppp ∈ H†E(Q̄), consider Oppp, defined over

Q̄ using assumption (2.46c), representing ppp. Form the set

G†E,ppp
def
= {σ ∈ GQ | Oσppp is †-equivalent over Q̄ to Oppp}.

Lemma 4.5. The set G†E,ppp is a group, and its fixed field, Q†E,ppp, in Q̄ depends

only on (†, ppp), not on the choice of Oppp. Further, if fine moduli holds for H†E, then

the equivalence class for ppp contains an object defined over Q†E,ppp.

Proof. Any σ ∈ G†E,ppp leaves ppp fixed. Otherwise its extension to Oppp would

represent an object in pppσ, an object not equivalent to Oppp.

Now, suppose two objects, Oppp and O′ppp, defined over Q̄ represent ppp. Denote the

graph of an isomorphism between them, postulated for G†E,ppp, by Γ. Apply postulate
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(2.46a) to assume the graph has definition field in Q̄. Now consider the caseO′ppp = Oσppp

for σ ∈ G†,ppp, denoting Γ by Γσ : Oppp → Oσppp . Then, apply τ ∈ G†E,ppp to Γσ to get

(2.49) Oppp
Γσ−−−−→Oσppp

(Γσ)τ−−−−→Oσ·τppp , showing σ · τ ∈ G†E,ppp and G†E,ppp is a group.

Denote another object, O′ppp, representing ppp over Q̄ and Γ the morphism above

between them. Temporarily, denote G†E,ppp using O′ppp in place of Oppp by G′E,ppp. In (2.49)

substitute O′ppp for Oσppp and Γ for Γσ. This shows τ ∈ G′E,ppp is also in GE,ppp establishing

that the two groups are the same, and independent of the choice of Oppp.

Now assume fine moduli holds for (†, E)). Return to (2.49). Then, the uniqueness

of the maps giving isomorphisms for the equivalent objects tells us that we can

assure Γσ·τ = (Γσ)τ ◦ Γσ for (σ, τ) ∈ G†E,ppp. This is the Weil co-cycle condition –

as in [We56] and [We62, p. 15, Thm. 3] – that guarantees we can find Oppp with

definition field Q†E,ppp. Rem. 4.6 adds remarks about relevant to how we use it. �

Remark 4.6. Saying that there an Oppp in Lem. 4.5 is defined over the desired

field, includes putting natural projective coordinates on that object. Further, we

can say that another object defined over Q†E(ppp) will be †-equivalent over this field.

Finally, sometimes we must add a little extra to the use of the cocycle condition;

the conditions don’t at first appear entirely stated in terms of a quasi-projective

structure. We see that in applying the Lemma to fine moduli.

4.1.3. Definition field of components. Fine moduli in (2.44) assures there is a

representing cover ϕppp over the minimal possible field Q†G,C(ppp) and that depends

only on the coordinates of ppp ∈ H(G,C)† and Q†G,C. Indeed, this arithmetic use of

fine moduli is much driven by what we need for the co-cycle condition. Without

fine moduli such representing objects may not exist (see Rem. 4.9).

Cor. 4.7 says, in one fell swoop, we can pluck the solution of the moduli problem

expressed in (2.44b) by picking a point p̂pp ∈ H(G,C)in (resp. ppp ∈ H(G,C)absT ),

adjoin Q∈G,C (resp. Qabs
G,C) to it, and take the associated fiber in (2.50). The following

is in [FrV91, Main Thm.] (an extension of [Fr77, Thm. 5.1]).

Corollary 4.7 (Global-BCL). Assume fine moduli for † = in or abs in

Thm. 1.7. Then, the minimal definition field of the diagram

(2.50) T (G,C)† → H(G,C)† × P1
z

projH†−−−−−−−−→H(G,C)† → Ur is Q†G,C.

Also, minimal definition fields of all covers in Ni(G,C)† intersect in Q†G,C.

Definition 4.8 (Definition as a moduli space). Consider the pullback diagram

over any component H′ of H(G,C)abs in Cor. 4.7. Refer to the definition field QH′

of that diagram as the definition field of H′ as a moduli space.

Comments on Cor. 4.7. §4.2 gives the ingredients of the BCL: why the Hur-

witz space diagrams are over the ’predicted” fields (here called over Q†G,C). A rough
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statement goes like this. Any σ ∈ GQ fixed on Q†G,C operating on the equation co-

efficients describing that diagram, or on individual fibers over Q̄, maps them to

diagrams and fibers associated with the exact same Nielsen class.

When fine moduli holds, aided by Weil’s cocycle condition, the whole diagram

has definition field Q†G,C. With the notation of Def. 4.8, two statements are imme-

diate from the Hurwitz spaces as moduli spaces.

(2.51a) QH′′ (resp. QH′) contains Qin
G,C (resp. Qabs

G,C permutes the diagrams run-

ning over H′′ (resp. H′).
(2.51b) If in (2.51a), H′′ lies over H′, then QH′′ contains QH′ .

For † equivalence, Hurwitz spaces are algebraic varieties that are complex man-

ifolds. That is no longer true for any reduced equivalence. Yet, they are still normal

varieties. So their components are disjoint, meaning this.

(2.52)
Points in different components represent inequivalent covers.
The definition field of a point contains that of its component.

Nevertheless, here is all that we can say at the outset.

(2.53)
Any σ ∈ GQG,C (resp. GQG,C,T ) permutes

H(G,C)in (resp. H(G,C)abs) components as moduli spaces.

Conclude: if even one cover in the Nielsen class has definition field K, then

Q†G,C ⊂ K, and the component containing a point corresponding to that cover has

moduli field contained in K. See Ex. 4.18. �

Rems. 4.9, 4.10 and 4.11 discuss in general what happens without fine moduli.

Remark 4.9 (Moduli field without fine moduli). Without a fine moduli prop-

erty, we don’t expect (??). That is, a point ppp ∈ H(G,C)•(QO) may not have a

representing cover Xppp → P1
z defined over Q(ppp). Still, the moduli space, with its

structures, will have its definition field determined by the moduli condition.

For example, suppose O is a braid orbit on Ni(G,C)†, corresponding to a com-

ponent HO of H(G,C)†, † = in or abs. Also, that V ⊂ HO is a Zariski or étale

open set, defined over QO. Then, the following objects will be defined over QO:

(2.54a) Maps involved in HO → Ur × P1
z and its projections; and

(2.54b) the collection of families TV → V ×P1
z whose fibers Tppp → ppp×P1

z represent

the points ppp ∈ V .

Remark 4.10. Even the group Z/n, has something to offer on fine moduli.

§3.3.2 notes that there are still realizing covers in this case over Q when the neces-

sary condition (??) holds. It also explains general cases guaranteeing that no cover

– even if (??) holds – in a Nielsen class will have definition Q. Finally, that there

is an explicit bound for the degree of the moduli field/Q in this case.
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Remark 4.11 (Reduced spaces moduli field). There are similar statements with

• = {†, rd} replacing †; adding reduced equivalence and substituting Jr for Ur. The

major difference is that the criterion for fine moduli changes, §2.2.3.

For example, Prop. 3.16 gives (G,C) = (A4,C+32−32) with two inner com-

ponents with QO = Q, for both. Here, the Hurwitz spaces have fine moduli, but

reduction of neither of its components has fine moduli. This also shows a refined

distinction when r = 4: One component has the close condition of b-fine moduli,

while the other does not.

4.2. The BCL Proof and Moduli Extension. Here we see how to apply

Lem. 4.5 (and Rem. 4.6) to the case where † is one of our equivalences and E is

a Nielsen class. Mainly this is checking the hypotheses (2.46). Our proof is a more

efficient version of [Fr77, p. 33–35]. We start, say, when † = absT , with a specific

cover ϕ : X → P1
z in Ni(G,C)absT over K. The essence of [Fr77, (5.10)] (or the

slower treatment of [Fr12, (5.2)]) is to compute the resulting Nielsen class upon

applying σ ∈ GK to ϕ. That includes its action on the set of branch points, defined

over K, even when individual such points may not be.

4.2.1. GQ action on covers in Ni(G,C)†. Continue the notation of §4.1.1, with

NC the least common multiple of the orders of elements in C, defining the Nielsen

class Ni(G,C). With ζt = e
2πi
t , t ≥ 1, identify the group G(Q(ζN )/Q) with the

multiplicative group (Z/N)∗ of invertible integers modulo N .

As in §4.17, NSn(G,C) is the normalizer of G that permutes the elements of C.

Then, denote the image conjugacy class of Ci under (conjugation by) β ∈ NSn(G,C)

by Cβi . We define two sets:

M̂ = {a ∈ (Z/NC)∗| there exists β ∈ NSn(G,C) with Cβi = Cai , i = 1, . . . , r.

M = {a ∈
(
Z/(N)

)∗| there exists γ ∈ Sr and β ∈ Sr with

Con
(
σ(i)a, G

(
ggg
))

= Con
(
γ−1 · σ

(
(i)β

)
· γ,G

(
ggg
))

for i = 1, . . . , r}.

It is easy to demonstrate the M (and therefore M̂) is a group. Let KM (resp. K
M̂

)

be the fixed field of M (resp. M̂) in Q(ζN ).

Theorem 4.1. We assume that condition (5.1) holds. Then the collection M(Y, ϕ; r)

has a minimal field of definition which we denote by KF.

We have KM ⊂ KF. In addition, if the Hurwitz number of
(
σ(1), . . . , σ(r)

)
= ggg

is 1 (see Section 4.B), then we have KM = KF.

We use the notation of Section 0.C. The field KF(P) is contained in KF(Fsymm).

Let K̂F(F
symm)

be the Galois closure of KF(Fsymm)/KF(P ×P1), and let K̂F(P) be

the algebraic closure of KF(P) in ̂KF(Fsymm). Then we have K
M̂
⊂ K̂F(P).
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Note:. In the notation at the end of Section 2, K
M̂

is a portion of a fixed

component of the extension of constants for the family fiber by (5.2). Also, it is an

unsolved problem as to whether KM = KmcF when the Hurwitz number of ggg is not

1.

Proof. We consider first the collection:

M0(Y, ϕ; r) = {Fsymm, ψsymm,Pr1,Pr2}

where:

(2.4) a) Fsymm ψsymm

−−−−→ UPr ×P1 P r1−−→ UPr and;

P r2−−→ P1

b) ψsymm = (ψ ◦ P r1 ◦ Φsymm, P r2 ◦ Φsymm)

Our first task is to show that the collection M0(Y, ϕ; r) has all the properties at-

tributed to M(Y, ϕ; r) in the statement of the theorem.

Let K ⊂ C be a field of finite type over Q containing a field of definition for each

member of the collection M0(Y, ϕ; r). An argument based on the proof of Lemma

(??)1.2 allows us to assume: [K : Q] < ∞ [nh, i.e., a finite extension]. We also

assume that K/Q is Galois.

For γ ∈ G(K/Q) we define:

M0(Y, ϕ; r)γ = {(Fsymm)γ , (ψsymm)γ , P r1
γ
, P r2

γ}

to be the transform of the collection M0(Y, ϕ; r) under γ. We say that M0(Y, ϕ; r)γ

is isomorphic to M0(Y, ϕ; r) if there is an isomorphism α(Fsymm)γ rendering com-

mutative the diagram:

(2.5)

T γ Ur × P1

T

α(T γ)

Ψγ

Ψ

nh triangular commutative diagram goes here LetH be the subgroup ofG(K/Q)

consisting of those γ for which M0(Y, ϕ; r)γ is isomorphic to M0(Y, ϕ; r). Let KF be

the fixed field in K of H. So far we have not used the fact that Aut(Y, ϕ) = {Id.}.
We call KF the field of moduli of the collection M0(Y, ϕ; r), in analogy with ([?],

pp. 32-35). This concept will be used again in comments in Section 6 (example 8).

Since we assume Aut(Y, ϕ) = {Id.}, we see that if M0(Y, ϕ; r)γ and M0(Y, ϕ; r)

are isomorphic, there is a unique isomorphism α
(
Fsymm)γ

)
making (5.5) commuta-

tive. Therefore, from [?] we may assume that KF is a minimal field of definition of

M0(Y, ϕ; r) (in analogy with the definition preceding the statement of this theorem).

We refer to our next computation as: The Branch Cycle Argument. An approx-

imation to this was used earlier in [?].
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Let Z
ϕ(Z)−−−→ P1 be a cover (non-singular and projective) defined over a number

field L, with: a description of its branch cycles given by σ(1, Z), . . . , σ(r, Z), cor-

responding respectively to branch points u(1, Z), . . . , u(r, Z). In analogy with pre-

vious notation consider: e(1, Z), . . . , e(r, Z);N(Z);L(Z), L̂(Z), and; the algebraic

closure of L in L(Z), denoted L̂ if no confusion will occur. Let x be a uniformizing

parameter for P1.

Consider the automorphism σ(i) of Q
((

(x − u(i, Z))1/e(i,Z)
))

[nh seems like

unnecessary parentheses) which is the identity on Q and maps (x− u(i, Z))1/e(i,Z)

to ζe(i,Z) · (x− u(i, Z))1/e(i,Z). We remind that x− u(i, Z) is replaced by 1/x when

u(i, Z) =∞. We have the embedding, via Puiseux expansions

(2.6) L̂(Z)
ψ̂(i,Z)−−−−→ Q

((
(x− u(i, Z))1/e(i,Z)

))
, i = 1, . . . , r

where σ(i, Z) is the restriction to L̂(Z) of σ(i). For any other embedding (fixed on

L(x))

L̂(Z)
ψ̂′ (i,Z)−−−−−→ Q

((
(x− u(i, Z))1/e(i,Z)

))
σ(i) restricts to some element of Con

(
σ(i, Z), G

(
L̂(Z)/L(P1)

))
. If ψ̂′(i, Z) is fixed

on L̂ then the restriction of σ(i) is in Con
(
σ(i, Z), G

(
L̂(Z)/L̂(P1)

))
.

Suppose now thatG
(
L̂(Z)/L̂(P1)

)
G
(
L̂(Z)/L̂(P1)

)
is isomorphic to Con

(
Ĉ(Y ))/C(P1)

)
,

and suppose also that in the isomorphism σ(i, Z) ∈ Con
(
Ĉ(Y ))/C(P1)

)
. In partic-

ular, from the computations of Section 4, this holds for all covers in the family given

by expression (5.2). We now show that KM ⊂ L (see statement of the theorem).

Suppose, in fact, that KM * L. Then, there exists ω ∈ G(Q/Q) such that

ω is fixed on L, but w is not fixed on KM . Thus, the restriction of ω to Q(ζN )

corresponds to a(ω) ∈ (Z/(N))∗ [nh what is a??]such that: there does not exist a

β ∈ Sr and a γ ∈ Sn with

(2.7) Con
(
σ(i)−a(ω), G(ggg)

)
= Con

(
γ−1 · σ((i)β) · γ,G(ggg)

)
for all i = 1, . . . , r

Let ω∗ be and element of G
(
L̂(Z)/L(P1)

)
whose restriction to L̂ is equal to

ω restricted to L̂. We extend ω to Q
((

(x − u(i, Z))1/e(i,Z)
))

by: ω(
∑
k ak(x −

u(i, Z))1/e(i,Z)) =
∑
k ω(an)(x − u(i, Z))1/e(i,Z) where ω(u(i, Z)) = u(j, Z). Note

that we automatically have e(i, Z) = e(j, Z).

Thus we obtain:

(2.8) L̂(Z)
ω◦ψ̂(i,Z)−−−−−−→ Q

((
(x− u(i, Z))1/e(i,Z)

))
.

For α ∈ L̂(Z) we compute the restriction of ggg(j) to α as:

ψ̂(i, Z)
−1
◦ ω−1 ◦ ggg(j) ◦ ωψ̂(i, Z).
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By direct computation on the Puiseux expansion ψ̂(i, Z)(α) we see that this is the

same as:

ψ̂(i, Z)
−1
◦ σ(i)

−a(ω)
◦ ψ̂(i, Z),

which is σ(i)−a(ω). Since ψ̂(i, Z)
−1
◦ω−1 ◦ggg(j)◦ωψ̂(i, Z) is the identity on L̂ (when

applied to L̂(Z)), this is in Con(σ(j), G(L̂(Z)/L̂(P1))), or

(2.9) Con
(
σ(i)−a(ω), G

(
L̂(Z)/L̂P1)

))
= Con

(
ω∗−1 · σ(j) · ω∗, G

(
L̂(Z)/L̂(P1)

))
.

However, with the aforementioned identification of G(ggg) with G(L̂(Z)/L̂(P1)), etc.,

expression (5.9) contradicts (5.7). Therefore KM ⊂ L.

Now we show that K
M̂
⊆ L̂. If we assume that K

M̂
* L̂ and proceed as above,

we end up with the expression:

Con
(
σ(i)−a(ω), G

(
L̂(Z)/L̂P1)

))
= Con

(
σ(j) · G

(
L̂(Z)/L̂P1)

))
.

where j is defined by ω(u(i, Z)) = u(j, Z). Again, this is a contradiction (from the

definitions of K
M̂

and a(ω)).

We need and addition to the brach cycle argument to describe what happens

when we apply ω ∈ G(Q/Q) to Z
ϕ(Z)−−−→ P1 when ω is not the identity on L.

Let lω be the image of L under ω. Let Zω
ϕ(Z)ω−−−−→ (P1 be the transform of

Z
ϕ(Z)−−−→ P1 by ω. By operating on the coefficients of the Puiseux expansions, as

above, we obtain:

ω : Q
((

(x− u(i, Z))1/e(i,Z)
))
→ ω : Q

((
(x− u(i, Z))1/e(i,Z)

))
.

We define ω̂ so as to make the following diagram commutative:

nh rectangular commutative diagram goes here

From ω̂ we obtain an isomorphism between the group G(L̂(Z)/L̂(P1)) and

G(L̂ω(Zω)/Lω(P1)) given by: σ → ω̂ · σ · ω̂−1 , σω for σ ∈ G(L̂(Z)/L̂(P1)). Also,

if σ is fixed on L̂, then ω̂ · σ · ω̂−1 is fixed on L̂ω, so we have an isomorphism of

G(L̂(Z)/L̂(P1)) to G(L̂ω(Zω)/L̂ω(P1)).

If we identify these two groups by this isomorphism and call the resulting

abstract group G, then (by an argument analogous to that above) we see that

Zω
ϕ(Z)ω−−−−→ P1 has a description of its branch cycles give by σ(i, Zω) (the branch

cycle cover over ω(u(i, Z)) where:

(2.10) σ(i, Zω) ∈ Con
(
σ(i, Z)−a(w), G

)
.

With this we conclude the computations we need from the branch cycle argument.
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4.2.2. Finish of the proof of Theorem (4.1) 5.1. At the beginning of this proof

we showed that M0(Y, ϕ; r) has a minimal field of definition, designated KF. We

finish the proof in three steps.

Step 1. We show that KF is a minimal field of definition of the collection M(Y, ϕ; r).

Again using the proof of Lemma (??) 1.2, we may assume that M(Y, ϕ; r) is de-

fined over a finite extension of Q and, for γ ∈ G(Q/Q) we may consider M(Y, ϕ; r)γ

(the transform of the collection M(Y, ϕ; r). Consider γ ∈ G(Q/KF). Apply γ to:

(2.11) a) Fsymm(Y, ϕ; r)
Φsymm

−−−−→ P(Y, ϕ; r)×P1 ψ×Id.−−−−→ UPr ×P1

to obtain:

(2.11) b) Fsymm(Y, ϕ; r)
(Φsymm)γ−−−−−−→ P(Y, ϕ; r)γ ×P1 ψγ×Id.−−−−−→ UPr ×P1

For ppp ∈ P(Y, ϕ; r), there is a unique point in P(Y, ϕ; r)γ (denoted α(γ)(ppp) ∈
P(Y, ϕ; r)γ) over ψ(ppp) such that:(

Fsymm(Y, ϕ; r)
)

(ppp)
→ (ppp)×P1

is isomorphic to: (
Fsymm(Y, ϕ; r)

)
α(γ)(ppp)

→ α(γ)(ppp)×P1

From the construction of Hurwitz families in Section 4, the map:

α(γ) : P(Y, ϕ; r)→ P(Y, ϕ; r)γ

is easily shown to be an analytic isomorphism. Also the maps:

α(γ
′
) ◦ α(γ)−1 : P(Y, ϕ; r)γ → P(Y, ϕ; r)γ

′

for γ, γ
′
∈ G(Q/KF))

satisfy Weil’s cocycle criteria. Therefore P(Y, ϕ; r) can be defined over KF. It is

a cumbersome, but essentially obvious, calculation to show now that M(Y, ϕ; r) is

defined over KF.

Step 2. We show KM ⊂ KF and K
M̂
⊂ K̂F(P).

Suppose KM is not contained in KF, so that [KM · KF : KF] > 1. Then from

Hilbert’s Irreducibility Theorem there exists a point ppp ∈ P, algebraic over KF, such

that KF(ppp) is disjoint from KM ·KF over KF. Therefore:

(2.12)
(
Fsymm(Y, ϕ; r)

)
ppp

rest. ofP r2◦Φsymm

−−−−−−−−−−−−→ P1

is a cover defined over KF(ppp). This contradicts that part of the Branch Cycle Ar-

gument which showed that any field of definition of (5.12) contains KM .

A calculation similar to this using Lemma (??) 2.3 can be used to show that

K
M̂
⊂ K̂F(P).

Step 3. When the Hurwitz Number is 1, KM = KF.
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Suppose the Hurwitz Number is 1 and KF * KM . Then there exists γ ∈
G(Q,KM ) such that γ is not fixed on KF. Let ppp ∈ P(Y, ϕ; r) be algebraic over

KF. We apply γ to the diagram:

nh rectangular commutative diagram goes here

to obtain:

nh rectangular commutative diagram goes here

However, the last calculation of the Branch Cycle Argument tells us that if σ(1), . . . , σ(r)

are a description of the branch cycles over the cover in the left vertical in the dia-

gram (5.13)a), then τ(1), . . . , τ(r) is a description of the branch cycles in the cover

in the left vertical diagram (5.13)b), where: τ(1), . . . , τ(r) generates G(ggg), and, τ(i)

is conjugate to σ(i) in G(ggg) for i = 1, . . . , r. Since the Hurwitz number is 1, this

implies that the cover of the left vertical diagram (5.13)b) actually appears as a

fiber in the family

(2.14) Fsymm(Y, ϕ; r)→ P(Y, ϕ; r)×P1.

From the uniqueness of the Symmetrized Hurwitz Family containing the cover of

the left vertical of diagram (5.13)b) (under condition (5.1)), this implies that the

cover:

(Fsymm(Y, ϕ; r))γ
(Φsymm)γ−−−−−−→ P(Y, ϕ; r)γ ×P1

is isomorphic to the cover (5.14). Since γ is not fixed on KF this contradicts the

properties we have proven for KF (it is a field of moduli for M(Y, ϕ; r)). With this

contradiction, we conclude the proof of Step 3 and of Theorem (4.1) 5.1. �

Let Y
ϕ−→ P1 be a cover (as in the beginning of this section) with a description of

its branch cycles given by σ(1), . . . , σ(r). We do not assume that Aut(Y, ϕ) = {Id.}.

Corollary 4.12. Let L be any field of definition of (Y, ϕ). Then KM ⊂ L. Let

L̂ be the algebraic closure of L in L̂(Y ) (the Galois closure of L(Y )/L(P1)). Then

K
M̂
⊂ L̂.

Proof. This was proven in the Branch Cycle Argument part of the proof of

Theorem (4.1) 5.1. �

As part of Theorem (4.1) 5.1 we immediately obtain:

Corollary 4.13. Assume in addition to the hypotheses of Corollary 5.2 that

Aut(Y, ϕ) = {Id.} and, the Hurwitz number of σ(1), . . . , σ(r) is 1. Then the Hurwitz

Parameter Space (Hurwitz scheme) P(Y, ϕ; r) is defined over KM .
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Note. There are simple examples (e.g., three branch point case) to show that

the cover:

P(Y, ϕ; r)
ψ−→ UPr

may be defined over a field strictly contained inKM . However, sinceAut(P(Y, ϕ; r), ψ)

is usually not the identity group, it can be a difficult problem to directly compute

the ’correct’ field of definition of P(Y, ϕ; r), ψ).

Corollary 4.14. Assume that (Y, ϕ) satisfies the hypotheses of Corollary 5.3.

Let K(ggg) be the intersection of all fields of definition of all pairs (Z,ϕ(Z)) where

Z
ϕ(Z)−−−→ P1 has a description of its branch cycles given by σ(1), . . . , σ(r). Then

K(ggg) = KM .

Proof. For ppp ∈ P(Y, ϕ; r), the cover Fsymm(Y, ϕ; r)→ ppp×P1 (obtained from

the fiber over ppp of Fsymm(Y, ϕ; r) → P(Y, ϕ; r) × P1 is defined over KM (ppp). From

Hilbert’s irreducibility theorem applied to P(Y, ϕ; r)
ψ−→ UPr the field:⋂

ppp∈P(Y,ϕ;r)

KM (ppp) = KM .

�

Let G be a finite group, and let L be a number field. We now discuss some

important problems. [nh an important problem?]

Problem 4.15. Show that there exists Y
ϕ(Y )−−−→ P1 such that: (Y, ϕ) is defined

over a number field K; G(Ŷ /K̂P1) = G, and; K̂ is disjoint from L over Q.

Consider a group G with a faithful transitive representation T : G→ Sn with:

(2.15) N
(
G(1)

)
/G(1) = {Id.} (notation of Lemma (??) 2.1)

Suppose we could show that:

(2.16) a) even if the Hurwitz number of (Y, ϕ(Y )) is not 1, then M(Y, ϕ; r)

(see above) is defined over KM , and;

b) for σ(1), . . . , σ(r) (a description of the branch cycles of (Y, ϕ))

including all conjugacy classes of G, then ̂KM (Fsymm(Y, ϕ; r))

(Galois closure of the cover Fsymm(Y, ϕ; r)→ P(Y, ϕ; r)×P1)

has its absolute constants equal to K̂M .

Under these conditions, we can choose σ(1), . . . , σ(r) so that for each integer a

there exists β ∈ Sr such that:
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Con
(
σ(i)a, G(ggg

)
= Con

(
σ((i)β), G(ggg)

)
for i = 1, . . . , r

(discussion before Theorem (4.1) 5.1).

Then K̂M = Q, and by the assumption of (5.16)b) and an application of Hilbert’s

Irreducibility Theorem (as in the proof of Corollary 5.3), we can affirm a positive

solution to Problem 5.5 for (G,T ) satisfying (5.15). However, there is no special

reason at this time to believe either (5.16)a) or b).

It is an extremely important problem to consider groups G equipped with a

faithful representation T for which (5.15) does not hold. In order to consider this

problem, it is necessary to consider covers Y
ϕ−→ p1 equipped with an extra structure

coming from a characteristic subgroup H of Aut(Y, ϕ). Suppose we are give two such

structures (Y1, ϕ1), H(Y1, ϕ1), S(Y1)) and (Y2, ϕ2), H(Y2, ϕ2), S(Y2)) where: S(Yi) :

H(Yi, ϕi)→ H is an isomorphism of H(Yi, ϕi) with the abstract group H. We say

that these two structures are isomorphic if there exists and analytic isomorphism

α : Y1 → Y2 with:

nh triangular commutative diagram goes here

The construction of moduli schemes and total families analogous to the con-

struction of P(Y, ϕ; r) and Fsymm(Y, ϕ; r) is considered in [?]. The search for the

fields of definition of these new objects is a contribution to the extension of the

results of this section to the more general class. Unfortunately, when the center of

Aut(Y, ϕ) is not the identity, there are great difficulties which require consideration

of still further structure utilizing the Jacobian variety of Y .

4.2.3. Component distinguishing moduli. It also discusses that having several

Nielsen class components raises issues on extending Nielsen class moduli to a compo-

nent distinguishing moduli, to capture its corresponding moduli definition field. We

have many examples of Nielsen classes having several distinct components. When

r = 3, this seemingly happens haphazardly. Yet, when r ≥ 4, and the braid group

dominates the nature of Hurwitz spaces, most components – so far – have a natural

significance for being separate from the other components. Sometimes, as happens

with the Nielsen class Ni((Z/`k+1)2Z/2,C24)in, when the spaces are recognized as

modular curves (§??), the reason is significant but related to famous classical situ-

ations. In that particular case, all the components are conjugate through the action

of a cyclotomic Galois group. We say simply, the components are conjugate. There

is no chance they are going to contribute RIGP solutions, though they certainly

contribute meaningfully, as the heart of Serre’s OIT.

In other cases, though maybe one component separates out as defined over Q

while others are conjugate through a more complicated action of GQ. That’s what

happens in both Ch. 4 and Ch. 5. In both cases the lift invariant plays a major
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role. In the former it provides a result that allows every group to play a role, while

the latter is our example of going beyond Serre’s OIT.

Or perhaps, as in §??, where the Nielsen class is Ni(An,C3r ), r ≥ n, there are

exactly two components, both defined over Q, separated by a nonobvious moduli

problem detected by the Spinn → An cover. If, for all n there are 3-cycle realizations

of An as an RIGP realization, they must/would/could come from any Q point on

one of these spaces. Since, however, there are two spaces, from which would you

look? There is a clear choice, for only one of those spaces has attributes like those

of the spaces Ni(D`k+1 ,C24)in, extending to Ni(D`k+1 ,C22s)in, which leads directly

to comparing the RIGP to famous conjectures on torsion on abelian varieties.

There are other examples, too, that show how the structure on cusps on our

Hurwitz spaces, that inspire naming components according to attributes that come

in seemingly magical ways from representations of finite groups. So, we do name

them, and pose the task of finding if it always happen that there is a convenient

way to attribute a moduli problem to these situations. It simplies everything to

use the BCL and to assume that C forms a rational union. Then, we ask if we

can identify the GQ orbits of components on a Nielsen class Ni(G,C)in. We know

we can starting with our assumption as in Ch. 4 when each conjugacy class in C

appears sufficiently often as in (3.19).

Finding that components H′′ have different fields attached to them doesn’t

change the fact that the BCL still applies to them. Yet, if for good reasons, even

though C is a rational, the space has a different moduli definition field QH′′ , it is

a contributor to our understanding of where it is that those RIGP solutions for G

are hiding.

Remark 4.16. [CmHa85, Prop 2.5].

4.3. Definition field examples. §4.3.1 gives examples, with fine moduli, in

which both the inner and absolute BCL can be compared while clarifying subtleties

on the meaning of the phrase as a moduli space.

While passing to reduced spaces doesn’t change the definition field of the Hur-

witz space, the fine moduli condition does. §4.3.2 augments slightly the considera-

tion of definition field as a moduli space, when fine moduli doesn’t hold, especially

to include the reduced Hurwitz space cases.

Singular points on the moduli space,Mg, of genus g correspond to curves with

extra automorphisms. For reduced Hurwitz spaces when r > 4, §4.3.3 introduces

the elliptic fine moduli condition that, as for r = 4 in (2.25b), has a Nielsen class

interpretation. There is no analog for r > 4 of b-fine moduli (2.25a).
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4.3.1. Fine abs and in examples. Ex. 4.17 fulfills the remark after [FrV91,

Thm. 1]. To whit: Assume (G,C, T ) has fine moduli. Let H′ be a component of

H(G,C)absT and H′′a component of H(G,C)in over it.

Then, we can have QH′ = Q, but QH′′ 6= Q. We intend Ex. 4.18 to clarify

distinguishing the definition field of the Hurwitz space cover Φ : H(G,C)† → Ur

from its definition as a moduli space (which includes the definition field of Φ together

with structure of families of covers).

Example 4.17 (Absolute vs Inner BCL). All conjugacy classes in Sn are ra-

tional. In An (T the standard representation), not so. For example, for n odd, there

are two conjugacy classes of n cycles: Cn and C′n = (1 2)Cn(1 2). For g ∈ Cn,

g−1 ∈ C′ for n ≡ 3 mod 4 (but not if n ≡ 1 mod 4). For n even, the same holds

with conjugacy classes Cn−1 and C′n−1 given by n−1-cycles, n−1 ≡ 3 mod 4.

Take n even to match the case ` = 2 in Ch. 5 §3 and C(n−1)k·(n−1)k′ to be k ≥ 1

repetitions of Cn−1 and k′ ≥ 0 representations of C′n−1. If k > k′, then

(2.17) (C(n−1)k·(n−1)k′ )
−1 = (C(n−1)k′ ·(n−1)k)−1.

Apply the BCL to conclude the diagram of (2.50), with † = in, has definition field

Q(An,C) = Q(

√
(−1)

n−1
2 n−1) = Q(

√
−(n−1)).

Yet, if we add mod Sn to the right side of (2.50), conclude Q(An,C, T ) = Q.

From the extension of the Conway-Fried-Völklein-Parker lemma [FrV91, App.]

(see §5), for k and k′ both large, H(G,C)in is irreducible. 4

Example 4.18 (Definition field as a moduli space). Take two Nielsen classes

Ni(G,Ci)
abs, i = 1, 2. Suppose they have definition fields QG,Ci,Ti , i = 1, 2, with

QG,Ci,T1
= QG,C,T2

a quadratic extension of Q. Then, it is possible that:

(2.18)
Φi : H(G,Ci, Ti)→ Ur are equivalent as covers, defined over Q;

and they might even have a dense set of Q points.

Yet, according to Cor. 4.7, none of the covers in those Nielsen classes will have

definition field Q.

We will have many examples, includng for inner spaces replacing absolute

spaces. Still, this example is done so explicitly in the literature, it is easy to trace

any misunderstandings. It is the first discovered (family of) Davenport polynomial

pairs. These are their specs, with G = PSL3(Z/2).

(2.19a) T1 (resp. T2) is its (degree 7) action on points (resp. lines) of P2.

(2.19b) Ci = {23 · Ci}, i = 1, 2, with {C1,C2} the two distinct 7-cycle classes in

G, 23 indicating 3 repetitions of the involution class.

(2.19c) The corresponding Φi s in (2.18) are equivalent as covers of U4.

(2.19d) The reduced Hurwitz spaces are degree 7 genus 0 covers of P1
j .
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(2.19e) QG,Ci,Ti = Q(
√
−7), the fixed field in Q(e

2πi
7 ) of

〈3〉 ≤ (Z/7)∗ = G(Q(e
2πi
7 )/Q).

This started in [Fr73]. With improved techniques it went into an exposition on the

complete series of Davenport polynomial pairs in [Fr12, §1-4] to explain, with little

abstraction, how braid monodromy works. [CoCa99] uses Magma to explicitly

write out the equations for all 21 Davenport-pair families, still using the theory

developed in [Fr73]. 4

4.3.2. Hurwitz spaces and stacks. Add comments to start on the moduli struc-

ture of Hurwitz spaces even without fine moduli, addending Rem. 4.9 especially to

include reduced spaces. Also, do some exposition on [Fr77, p. 46-48, Prop. 3] on

the criterion for representing families to exist in the Zariski topology.

4.3.3. Elliptic fine moduli on reduced spaces. Fill out the Rem. 2.11 in terms

of branch cycles as in the first Fried-Gusic etc. paper.





CHAPTER 3

The Lift Invariant and Hurwitz space components

§5 Gives one culmination of the classical period of this subject: The first struc-

ture theorem on the absolute Galois group, GQ, of Q. To show that this work had

practical applications, §5.2 explains, as an immediate aftermath, undeniable strides

on the RIGP. gives two tools – braid action and the BCL– that help us detect

their definition fields and sometimes their irreducible components. §5 uses (2.1) to

give precise results about the absolute Galois group, GQ. §5.2 shows the previous

somewhat abstract results, can be explicit in applying to the RIGP.

This chapter is a prelude to Part II of the paper. Comparing with the first half

is akin to distinguishing monodromy of covers from monodromy of `-adic represen-

tations. §2 moves to the second part by introducing (finite) groups that put the

RIGP in a context with these topics.

(3.1a) The RIGP (or IGP) is not nearly done, even were it known for all simple

groups (§5.2).

(3.1b) Every finite group, excluding nilpotent (see Shafarevich §5), has associated

canonical `-adic representations.

Recall from Cor. 4.7 the first RIGP needs for an RIGP regular realization

over K ≤ C of group G with classes C:

(3.2a) K contains QG,C.

(3.2b) H(G,C)in has at least one absolutely irreducible K component.

We apply this where K = Q. The immediate RIGP application of these:

(3.3a) Conditions (3.2) are necessary if the ramification from C corresponds to

even a single RIGP realization for G.

(3.3b) (3.2) is sufficient for a (G,C) RIGP realization over K. In particular it

gives such a realization if K is PAC.

Formulas (2.42) and (2.43) are a consequence of a formula useful for considering

the definition field of a specific cover in the Nielsen class as noted in the comments

of Lem. 4.1. Over R, this gives a compact description of all real points on any

Hurwitz space directly from C and the loci of branch points according to which are

real, which fall in complex conjugate pairs [DFr90]. This therefore produces other

necessary conditions, but again easily decided upon according to properties of C.

103
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1. The restricted lift invariant

First a naive version of how to effectively fulfill the basic needs of (3.2). We

restrict here to being over Q, and to inner equivalence, though, as with the BCL

we can be precise over any (characteristic 0) field and any cover equivalence.

1.1. Commutators and Nielsen classes. Start with a rational union,

∗C = ∗C1, . . . , ∗Cr∗ ,

of distinct conjugacy classes in the group G. For any vector nnn ∈ (Z+)r
∗

consider just

those rational conjugacy class sets of the form ∗C
nnn = ∗C

n1
1 . . . ∗C

nr∗
r∗ . These form a

semi-group under slotwise multiplication which we denote byR∗C. From the branch

cycle lemma, these are the classes we need to form Hurwitz space components whose

points correspond to covers over Q.

For technical reasons we also need classes not restricted to be a rational union

but still supported in ∗C. Denote these Run
∗C

. Assuming ∗C fixed, regard Run
∗C

as a

subset of (Z+)r
∗
.

For nontrivial considerations, assume that ∗C generates G.

Lem. 1.7 then guarantees that Ni(G,C) is nonempty if the multiplicity of the

support of all elements in ∗C is sufficiently high. Denote by N∗C the least common

multiple of the orders of the elements in ∗C.

Problem 1.1. Running over R∗C, identify all absolutely irreducible Q compo-

nents of H(G, ∗C
nnn)in.

Again, components of H(G, ∗C
nnn)in corresponds to orbits of Hr, the Hurwitz

monodromy group, on Ni(G, ∗C
nnn) with r =

∑r∗

1 ni. Our treatment of the topic

differs considerably from that in [FrV91] and [FrV92] to take advantage of Frattini

cover insights for two reasons (see Rem. 2.1):

(3.4a) to avoid an overly restrictive topology condition on H2(G,Z) that G be a

perfect group; and

(3.4b) to display the relation between this topic and the Modular Tower topic

that is the main goal of this paper.

For ` ∈ DG
def
= {` | `||G|}, there is a universal `-Frattini cover

ΨG,` : UG,` → G (§4.4):

ker(ΨG,`) is a pro-free (finitely generated), pro-` group, and ΨG,` factors through

any `-Frattini cover of G. The fiber product of the ΨG,` s over G, ΨG : UG → G, is

versal for factoring (surjectively) through any Frattini cover of G (§1.3). Mod out

by the commutator of ker(ΨG,`) to get the universal abelianized `-Frattini cover,

(3.5) ΨG,`,ab : UG,`,ab = UG,`/[ker(ΨG,`), ker(ΨG,`)]→ G.
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Definition 1.2. A Frattini cover, ψ : H → G, is central if ker(ψ) is nontrivial

and in the center of H. Like all Frattini covers it is a fiber product of H` s over G.

Denote those ` for which ψ` : H` → G is nontrivial by D∗ψ.

Notation: The number of classes in C is rC; and the least common multiple of

orders of elements in ∗C is N∗C.

For g ∈ G, ` ∈ DG and (`, ord(g)) = 1, an elementary piece of the Schur-

Zassenhaus lemma says a unique ĝ ∈ H` over g has ord(ĝ) = ord(g). As Prop. 1.8

shows, this is a special case of this more general property.

Definition 1.3. Refer to the class, Cg, of g ∈ G as liftable (to ψ) if for ĝ ∈ H
over g, |Cĝ| = |Cg|; unliftable if not. As ψ is central, liftability depends only on g,

not on ĝ.

That is, there is no non-trivial (single) commutator hĝh−1ĝ−1 ∈ ker(ψ), h ∈ H.

Checking this can be nontrivial, even if you know G well.

Definition 1.4. Assume all classes in ∗C are liftable to ψ.

For C ∈ R∗C and ggg ∈ Ni(G,C), define ĝgg
def
= (ĝ1, . . . , ĝrC).

For ggg in any braid orbit O on Ni(G,C)in,

sψ(ggg)
def
= sψ(O) =

r∏
i=1

ĝi
def
=
∏

(ĝgg) is the restricted lift invariant.

For a given C and ` ∈ DG, define

SG,C,ψ
def
= {sψ(O)|running over all braid orbits O on Ni(G,C)}.

We concentrate on a subconcern of Prob. 1.1.

Problem 1.5. Say something definitive about C ∈ R∗C by which we can

separate braid orbits on Ni(G,C) by lift invariants.

§5.2 reminds of examples that cover much territory:

(3.6a) a solved but serious puzzle on simple branched covers;

(3.6b) how Riemann’s most famous invention – half-canonical classes – arises

with alternating groups; and

(3.6c) unfinished business relating regular realizations of dihedral groups with

torsion points on hyperelliptic jacobians.

With any central Frattini extension such as ψ we use the subscript ` on the

kernel, as in ker`, to indicate its `-Sylow. Denote the (generated by) commutator(s)

subgroup, [H,H] intersected with ker(ψ) by VH =
∏
`| ker(ψ) Vψ,`.

For C a conjugacy class in G, and g ∈ C, refer to gugg
−1
u g−1, gu ∈ G, as a C

commutator. Denote the group they generate, the commutator subgroup of G, by
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[G,G]; its (maximal abelian) quotient, G/[G,G], by G
ab

; and the canonical map

G→ G
ab

by ψ
ab

(or if necessary to assure we are aware of G, ψG,ab).

There is an analogous definition for C classes inG: A product of C commutators.

Note: Prop. 1.8 distinguishes between products of commutators in VH and a single

commutator.

Definition 1.6. For any C supported in ∗C consider∏
(C)

def
= {

∏
(ggg) | ggg ∈ C}.

Refer to C as satisfying product 1 if 1 ∈
∏

(C). Denote the complete collection of

such C as Prod(∗C)1.

Note: Prod(∗C)1 includes those C such that Ni(G,C) is a nonempty Nielsen

class. Denote the latter set as Ni∗C.

Lemma 1.7. There is a natural semi-group homomorphism, π
ab

, from Run
∗C

into

G
ab

, by ggg ∈ C 7→
∏

(ggg), for which C ∈ Prod(∗C)1 7→ 1.

For C ∈ Prod(∗C)1, any g ∈
∏

(C) is in [G,G].

Suppose C ∈ Prod(∗C)1 and each class in ∗C appears in C with sufficient

multiplicity. Then, running over C′ in ∗C:

(3.7a)
∏

(C′ ·C) is the coset of [G,G] represented by π
ab

(C′); and

(3.7b)
∏

(C) is [G,G] and C ∈ Ni∗C.

Proof. The range of π
ab

is G
ab

, the maximal abelian quotient of G. So, the

image of C doesn’t depend on the choice of ggg ∈ C, or the order of elements in ggg.

Thus, it is well defined on the semigroup of elements in R∗C. Therefore, everything

in Prod(∗C)1 is in ker(π
ab

) and is a products of commutators.

Now, suppose C ∈ Prod(∗C)1. We have really established (3.7a) above. The

rest of the proof is dedicated to (3.7b). Consider the results of the union of the

collection
∏

(C) running over all C ∈ Run
∗C

(a subset of G). If gggi ∈
∏

(Ci), i = 1, 2,

then ggg1 · ggg2 ∈
∏

(C1 ·C2).

(3.8) Use that ∗C generates G to conclude the complete collection is G.

Suppose there is a C for which
∏

(C) is [G,G], or a C′ in ∗C for which C′ ·C
is the g′ = π

ab
(C′) coset of [G,G]. Both cases are similar, so we assume the first.

We need an estimate on the multiplicity, v1, . . . , vr∗ , of elements in ∗C that assures

every element of G
ab

has the form
∑r∗
i=1 aiui, with 1 ≤ ai ≤ vi, ui = π

ab
(∗Ci),

i = 1, . . . , r∗. (Clearly, vi ≤ |Gab
| works, but in practice you might want much

better than that.)

For any g′ ∈ G, {g′ · g}g∈∏C is a coset of [G,G]. Consider the multiplicity,

w1, . . . , wr∗ , of appearance of classes in ∗C in C. Then, an appropriate bound for
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the multiplicities of appearance of the classes in ∗C for the conclusion of in (3.7b) is

given by (w1+v1, . . . , wr∗+vr∗). Finally, if there is no such C we get a contradiction

to (3.8). �

Prop. 1.8 works for classical applications with G a group, as in Ex. 2.9, of which

most have heard. Prop. 5.9 is general – though similar – in handling all finite groups.

That forces an adjustment on the lift invariant. When we know |VH | a priori, (3.10d)

is very helpful:

(3.9) that (N∗C, |VH |) = 1 implies ∗C is liftable.

Proposition 1.8. Suppose all elements of ∗C are liftable to ψ. This allows

identifying the classes of ∗C with classes in H. If O is a braid orbit on Ni(G,C),

then the following hold.

(3.10a) The restricted lift invariant in ker(ψ) is independent of ggg ∈ O and distinct

values in sG,C,ψ correspond to distinct braid orbits.

(3.10b) For g′1, g
′
2 ∈

∏
(C), (resp. s1, s2 ∈ SG,C,ψ), g′1(g′2)−1 (resp. s1s

−1
2 ) is an

explicit product of C commutators in G (resp. in H).

(3.10c) If (3.9) holds, then, all elements of ∗C are liftable to ψ.

(3.10d) If Ni(G,C) is a nonempty Nielsen class (resp. 1 ∈ SG,C,ψ), then each

g ∈
∏

(C) (resp. s ∈ SG,C,ψ) is an explicit product of C commutators in

G (resp. in H).

(3.10e) If all ∗C in ∗C appear in C with high multiplicity, then each

v ∈ ker(ψ) is a product of C commutators and ker(ψ) = SG,C′,ψ.

Denote the collection of orbits of ggg ∈ Ni(G,C) for which sψ(ggg) = 1 by Ni1.

Then, if C is a rational union, GQ permutes their corresponding components (as

inner or absolute moduli spaces, Def. 4.8).

§1.3 has the proof of Prop. 1.8, several of whose pieces will be used elsewhere.

It also aids in distinctions with Prop. 5.9. It is preceeded by §1.2 on a universal

construction of Frattini central extensions based on the Universal Frattini cover.

Remark 1.9 (Lem. 1.7 explicitness). Points of explicitness start in Lem. 1.7.

We can write
∏

(ggg), ggg ∈ C, for C in Prod(∗C)1, explicitly as a product of C

commutators (3.10d). Being explicit on the multiplicity in C of the classes in ∗C

is harder. Example: Specifically comparing production of w1, . . . , wr∗ with (3.8)

requires producing the coset representation expressing G
ab

. The Todd-Coxeter (a

la Shreier’s) algorithm suffices [Ar91, Chp. 6, §9], because combining branch cy-

cles with the commutator expressions is a quotient of the free group presentation

required of the algorithm.
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Even more involved is how to deal, for C ∈ Ni∗C, with the number and nature of

braid orbits. Prop. 1.8 and Prop. 5.9 show that involves computational statements

about central Frattini extensions (see §2.1).

1.2. Central Frattini covers. Recall the universal abelian `-Frattini cover

ΨG,`,ab : UG,`,ab → G (from (3.5)). We use it to locate the Frattini central extensions

of G by which we construct the lift invariant.

Form a versal central extension RG,` for Frattini central covers of G with kernel

an abelian `-group as follows.

(3.11a) For a maximal quotient of ker(ΨG,`,ab) with trivial G action, mod out by

WG,` = [UG,`,ab , ker(ΨG,`,ab)] on ker(ΨG,`,ab).

(3.11b) Prop. 1.8 shows elements in WG,` that are lift invariant differences come

from products of commutators:

VG,` = ker(ΨG,`,ab) ∩ [UG,`,ab , UG,`,ab ]/WG,`.

Similarly there is a VG. Notice that the map ΨG,`,ab restricts to send the product of

all the VG,` s surjectively to VH . The lift invariant is a tool for investigating Hurwitz

space components, via `-Frattini central extensions of G, to see the effect of those

components for a given C.

Definition 1.10 (Representation covers). There is a central Frattini cover

ψG,` : RG,` → G (resp. ψG : RG → G) – an `-representation cover – in which

VG,` (resp. VG) is the exact kernel. Prop. 2.3 shows its existence, et. al.

Schur first showed the existence of VG (the Schur multiplier of G). We see it as

a maximal possible ker(ψ), ψ a central Frattini cover with commutator kernel as in

Cor. 2.6. While R – a representation cover – does not uniquely present it unless G

is perfect, Cor. 2.6 locates representation covers among all central Frattini covers.

[Is94, p. 118] expostulates,“We shall not attempt to expain why anyone would

be interested in such a thing.” We have been giving motivation for this: It imme-

diately produces and explains many distinct Hurwitz space components, though as

in §3.1.2 §3.2, not all, once we get into the territory of Serre’s OIT. We have two

goals for the remainder of this subsection.

Ex. 1.11 and Prop. 5.9 handle differently the mysterious, but finite (in many

cases, trivial), group VG. There are three disparate applications in which we ask

about components related to lift invariants.

(3.12a) Draw precise conclusions about a natural family of (related) pairs (G, ∗C)

running over all C ∈ R∗C.

(3.12b) For each G, include all its nontrivial classes in ∗C.

(3.12c) Instead of changing C, in MTs it makes sense to consider a natural series

of groups {Gk}∞k=0 covering one fixed group, G = G0.
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In (3.12c) we make sense of C not changing, thoughG does. In these applications

the goal remains to identify components of Nielsen classes defined (as moduli spaces)

over Q. In §1.1, as with the other applications, we take a natural family of groups in

(3.12c), but even there we fix C. For the application to Thm. 5.4 and its like, given

by (3.12b), it suffices to draw conclusions about components for a cofinal family of

finite groups as is stated in Prop. 5.9. That is because once G is realized regularly,

so is every quotient of G.

1.3. Proof of Prop. 1.8. Generating braids are in (2.10). Write g ∈
∏

(C) as

a product of elements in the respective conjugacy classes. Then, any braid applied to

the rC tuple, preserves the product of the entries, as we now illustrate by example.

That the lift invariant is a braid invariant only needs that in H, replacing, say

ĝkĝk+1 by ̂gkgk+1g
−1
k ĝk

gives the same lift invariant. That is, ̂gkgk+1g
−1
k = ĝkĝk+1ĝ

−1
k : both are the same

element over gkgk+1g
−1
k , the left side given by conjugating a representative of that

conjugacy class through the formula |Cĝ| = |Cg|.
There are two statements in (3.10b) acceding to similar arguments. So we just

show the difference of the lift invariants of ggg,ggg′ ∈ Ni(G,C) is an explicit product

of C commutators. With no loss, as above, apply a braid to ggg′ to assure that g′i is

conjugate to gi, i = 1, . . . , r. Then, with C−1 the conjugacy classes of the inverse

of the classes of C, express their difference as the lift invariant of the juxtaposition

(ggg, (ggg′)−1) in Ni(G,C ·C−1).

With ĝgg′ = (h1ĝ1h
−1
1 , . . . , hr ĝrh

−1
r ), h1, . . . , hr ∈ H`, apply a sequence of braids

to express the invariant differences as
∏r
i=1 ĝi ·

∏1
i=r hiĝ

−1
i h−1

i =

(3.13)

∏r
i=1 ĝ1h

′
1ĝ
−1
1 (h′1)−1 · · · ĝih′iĝ

−1
i (h′i)

−1 · · · ĝrh′r ĝ−1
r (h′r)

−1 :
a product of C commutators in ker(ψ).

For example, hr = h′r, h
′
r−1 = grhr−1g

−1
r hr−1grh

−1
r−1g

−1
r , . . . , tedious, but fairly

obvious. The result, in ker`, is a product of commutators in H`. Conversely, given

(3.13), we can reverse the braids to express it as the lift invariant of two distinct

braid orbits in Ni(G,C).

That finishes (3.10a) and (3.10b). For each case of (3.10d), apply (3.10b) using

the hypothesized expression of 1 as
∏

(ggg′) (resp.
∏

(ĝgg′)) for ggg′ ∈ C.

Now assume (3.9). Since (| ker(ψ)|, N∗C) = 1, Schur Zassenhaus says there is

a unique same-order lift g ∈ C to ĝ ∈ H. If hĝh−1 also lies over g, then it is the

unique same order lift. So it equals ĝ, finishing (3.10c).

Now apply Lem. 1.7 to get (3.10d). Then, once we know ggg ∈ Ni(G,C), from the

Frattini property it follows that ĝgg ∈ Ni(H,C), and (3.10e) follows.

Now suppose the subset of ggg ∈ Ni(G,C)in with sψ(ggg) = 1 is nonempty. Relative

to any classical generators, take a cover, ϕ̂ : X̂ → P1
z that represents an element in
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Ni(G,C)1. Then, there is a cover ϕ̂H : X̂H → P1
z with group H that factors through

ϕ̂ and is unramified from X̂H → X̂. Indeed, branch cycles for ϕ̂H are given by ĝgg,

the lift of ggg. The no-ramification property is a consequence of what Grothendieck

called Abhyankar’s Lemma. We will refer to ϕ̂H later as the Trivial Invariant lift

(of ϕ̂).

We assumed C is rational union of conjugacy classes. We show, therefore, that

covers having trivial lift invariant will be recognized by GQ. From the BCL, σ ∈ GQ

will send ϕ̂ to an element in the same Nielsen class. That action will extend to ϕ̂H ,

including to any local parameters for ramification, preserving those ramification

indices. Thus, covers in H′ are mapped by σ into covers in H′. A single cover in a

moduli space component determines the lift (braid) invariant. That concludes the

statement that the components of H′ are mapped among themselves by GQ.

Prop. 1.8 says, assuming high multiplicity of all the support conjugacy classes

from ∗C, we achieve all lift invariants as products of C commutators if and only

π
ab

(C) = 1. Ex. 1.11 does a special case that simplifies most of the explicitness

complications of Rem. 1.9. In this example, the remaining mystery is how to directly

know central Frattini covers, a problem finessed by the general lift invariant in

Prop. 5.9. It also emphasizes the value for rational unions of classes to satisfy the

last paragraph of Prop. 1.8.

Example 1.11. Assume ∗C is a single rational (generating) conjugacy class C of

odd, d, order elements, with (|VG|, d) = 1. First let ψR : R→ G be a representation

cover of G. It is a Frattini cover, and so C lifts to a generating conjugacy class in R.

Therefore, for any m ∈ ker(ψR), If r ≥ r′ by noting that we can write any integer

exceeding d in the form 2a2 + dad with a2, ad nonnegative integers.

Indeed, take m as above, and let g be any representative of C. Write r−rm as

2a2 + dad. With (g, . . . , g) the juxtaposition of g taken d times, take as a represen-

tative with lift invariant rm the Nielsen class element

(mggg, (g, g
−1)a2 , (g, . . . , g)ad)

with subscripts a2 and ad indicating repetition. 4

2. The general lift invariant

Prop. 1.8 used the restricted lift invariant, for which the assumption was that

∗C is liftable. Ex. 2.9, satisfying the special case where (N∗C, ker(ψ)) = 1 for any

central Frattini extension ψ of G, guided the author (see Serre’s reference to our

interchange in the footnote in [Se90a, p. 480 and Ref. 4], or [Fr10, Inv. Cor. 2.3]).

The difference between Prop. 1.8 and Prop. 5.9 is the removal of the liftable

condition. That came through John Thompson from Conway and Parker. Völklein

thought to reduce the problem to the case of one braid orbit. That, however, is
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neither necessary (from the last paragraph of Prop. 1.8) nor always wise, since it

removes the classical connections and applications now feasible to 1-dimensional

reduced Hurwitz spaces. Even those well-acquinted with this area should be sur-

prised at the relevance in Ex. 2.11 of the oldest example: simple branched covers of

the sphere.

2.1. Commutator kernels and Schur multipliers. To define the lift in-

variant start with g in one of the conjugacy classes ∗C in ∗C. Define ĝ to be any lift

of g to a representation cover ψR : R→ G (or one prime at a time to ψ` : R` → G).

The big difference is that condition (3.10a) no longer holds: a difference of achieved

lift invariants can be a single commutator in a representation cover ψR : R → G

Frattini central extension. The case A4, ` = 2 starts two very different series of

examples: Ex. 2.9 or Ex. 4.8.

This confounds that the lift invariant for ggg ∈ Ni(G,C) is a braid invariant. That

results from ̂gkgk+1g
−1
k = ĝkĝk+1ĝ

−1
k as in the proof of Prop. 1.8. To restore this

formula we have only to mod out VG or VG,` by the subgroup, SC∗C, generated by

single commutators from ∗C. SinceR/SC∗C → G is still a central Frattini extension,

this changes almost nothing in the natural extension of Prop. 1.8 to Prop. 5.9.

Definition 2.1 (General lift invariant). Extend the lift invariant from Def. 1.4

by putting its value in VG/SC∗C. We await Prop. 5.9 to find, for each G, a rational

union C having

(3.14) a braid component H′ of H(G,C)in defined over Q.

It is by dealing with each prime `||G| one-at-a-time that we affect (3.4a). The

Universal `-Frattini cover of G in §1.2 applied in § 1.3 to see the important Frattini

central extensions that give us the lift invariant. This replaced a Hopf use of a

free group and a presentation of G to define H2(G,Z) with its motivation as a

definition of a particular (group) homology group (discussion [Br82, p. 2]). We

conclude this subsection by relating the ingredients of a long story in group theory

to our considerations.

Definition 2.2. Refer to a central cover ψ : R → G as having commutator

kernel if ker(ψ) consists of elements in [R,R].

The restricted lift invariant condition applied to ψ says that ker(ψ) is not only

a product of commutators, it is a product of C commutators, so long as these

necessary conditions hold (3.10e):

(3.15a) elements of ∗C appear suitably often in C; and

(3.15b) the image of C in the commutator quotient of G is trivial.

That leaves us two goals for the remainder of this subsection.
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(3.16a) Prop. 2.3 comments: Find a good route to explaining the Schur multiplier,

in the generality required in applications.

(3.16b) Cor. 2.6 and Cor. 1.6: Exploit the universal `-Frattini cover as a sometimes

effective computation of lift invariants.

We apply (3.17) when G acts trivially on A in our search for central Frattini

extensions of G, though it holds for any abelian G module A.

The comments explain terms, including Ext and h. Cor. 2.6 connects to primes

for which G is not perfect using H1(G,Z) = G/[G,G]
def
= G

ab
. As in §1.1 denote the

canonical map G→ G
ab

by ψ
ab

. Ch. 6 §1.4 puts Ext in a context.

Proposition 2.3. [Sp66, Thm. 3, Chap. 5, §5] calls the split exact sequence

(3.17) a universal-coefficient theorem for cohomology:

(3.17) 0→ Ext(Hq−1(G,Z), A)→ Hq(G,A)
h−→ Hom(Hq(G,Z), A)→ 0.

Take q = 2 in (3.17). Apply h to the class of an extension of G by A to produce

the element of Hom(H2(G,Z), A) that derives from it.

The image of an extension ψE : E → G
ab

realizing an element of Ext(H1(G,Z), A)

defines the extension ψ∗
ab

: E∗ → G by pullback, giving the image of ψE in H2(G,A).

Expression (3.18) gives this map at the cocycle level defining the cohomology classes.

Comments. Denote the q-chains over Z[G] by which we compute cohomology

by Cq. Compute h in (3.17) by recognizing that an element of Hq(G,A) is given

by f in the kernel of the derivative operator applied to Hom(Cq, A). Use the same

chains to compute homology. Elements of Hq(G,A
′), in the kernel of the deriva-

tive operator, have the form
∑
i ci ⊗ a′i, with the ci s in Cq. Then,

∑
i f(ci) ⊗ a′i

makes sense upon checking independence of f (resp.
∑
i ci ⊗ a′i) modulo respective

boundaries. That defines h.

While [Br82, p. 306] refers to the universal coefficient theorem, the spots those

references appear – based on spectral sequences – don’t use the phrase. I eventually

found it buried in exercises [Br82, p. 60, #3]. By contrast, [Br82, p. 97, #7] has

a long exercise on Universal Central Extensions.

Alas, it assumes G is perfect – we can’t – concluding then that

H2(G,A) = Hom(H2(G,Z), A) (A with trivial G action).

Here the universal coefficient is H2(G,Z); or H2(G,Z) represents H2(G,A) (a func-

tor of A). Even then, it uses another telegraphic exercise, Yoneda’s Lemma. [Sp66]

is about topological spaces; though [Br82] stresses that group cohomology extends

compatibly singular cohomology of topological spaces. Cor. 2.6 refers to [Br82]’s,

often clever, exercises.

In Brown or Spanier, Ext refers to Ext1
Z, the first Ext functor for which Ext1

R(M,A),

with R modules M and A, representing classes of abelian extensions 0 → A →
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E
ν−→M → 0 with A a submodule of E. Another extension E′

ν′−→M , with A ≤ E′,

is equivalent to ν, if there is a module homomorphism µ : E → E′ with ν′ ◦ µ = ν.

Here we extend G
ab

by A.

Now consider a cocycle (u1, u2) ∈ G
ab
7→ c(u1, u2) ∈ A defined by an element

in Ext(G
ab
, A). It creates a new multiplication on A×G

ab
:

(a1, u1) +∗ (a2, u2) = (a1+a2 + c(u1, u2)(a1, a2) | u1, u2 ∈ Gab
, a1, a2 ∈ A.

The key condition in defining a cocycle is that the law of addition, +∗ be

associative. The natural map that sends the cocycle representative to a cocycle

representative, c∗(g1, g2) in H2(G,A) is given by the formula

(3.18) c∗(g1, g2)(a1, a2) = c(ψ
ab

(g1), ψ
ab

(g2))(a1, a2).

Now, easily trace that the multiplication on c∗(g1, g2) is defining the pullback. This

concludes the proof. �

For M an abelian group, denote by ΦM,ab : M̂
ab
→ M the natural profree

abelian group of the same rank that covers M . The composition into ` components

is given by M̂
ab

=
∏
`||M | M̂`,ab where M̂`,ab is the pro-` abelian group of the same

rank as the ` component, M`, of M .

Corollary 2.4. With M and A abelian groups, elements of Ext(M,A) giving

abelian (so central) Frattini covers of M are quotients ψ : E → M of M̂
ab
→ M

with kernel A.

For M = G
ab

, and E above, the pullback of ψ∗
ab

(E) of E over G (as in Prop. 2.3)

is a central Frattini cover. Then, the fiber product G×G
ab
E is also a central Frattini

cover of G (see Rem. 2.8).

Proof. The elementary divisor theorem allows us to write M as a sum of its

(cyclic) `-primary parts. Since Ext(M,A) is an additive functor in each variable,

and since Frattini covers are given by fiber products of their ` parts, it suffices to

take M = Z/`t. Then, the abelian Frattini covers of M are Z/`u for any u ≥ t.

Combine these over all the primary parts of M .

Now take M = G
ab

, and consider a nontrivial abelian Frattini cover ψ : E →
G

ab
from above. The kernel of ψ∗

ab
: GE

def
= G ×G

ab
E → G has the form {(1, e) |

e ∈ ker(E → G
ab

). Clearly that is in the center of GE .

Suppose GE is not a Frattini cover of G (by projection onto the first factor).

Then, some H < GE projects onto G: prH : H → G is a cover. Then, ker(prH) is

isomorphic to Z/`v with v < u−t. Assume E has cocycle c : G
ab
×G

ab
→ A as at

the end of the proof of Prop. 2.3.

Then `v · c : (u1, u2) ∈ G 7→ `vc(u1, u2) defines a nontrivial element of

Ext(G
ab
,Z/`u−t−v) whose image in H2(G,Z/`u−t−v) is trivial.
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Apply (3.17) with A above replaced by A′ = Z/`u−t−v.

That says Ext(G
ab
, A′)→ H2(G,A′) is an embedding. Here, though, the trivial

element of Ext(G
ab
, A′) and the element defined by `v · c both go to the trivial

element. Thus, v = u−t, and H = GE is a Frattini cover of G. That concludes the

proof of the lemma. �

Definition 2.5. According to (3.17), the middle term is a direct sum its left

and right sides (see Rem. 2.7). Our main case is q = 2. It is convenient to refer to

the left (resp. right) as the Ext (resp. Comm) side.

Cor. 2.6 differentiates the central Frattini extensions from Ext side from those

from the Comm side. While the latter are significant in the description of the lift

invariant, both play serious roles in the OIT. As previously, use ψ` : RG,` → G to

be an `-representation cover of G. Also, denote the ` part of G
ab

by G
ab,`.

Corollary 2.6. A central cover ψ : H → G from the Comm side is a Frattini

cover. In particular, for any finite group G (resp. prime `||G|) there is a represen-

tation (resp. `-representation) cover

ψG : RG → G (resp. ψG,` : RG,` → G).

Assume the natural cover, ψ
ab,` : G → G

ab,`, splits. Further, for a choice of

splitting, µ : G
ab,` → G, the commutation action of µ(G

ab,`) extends to the ` part

of a representation cover ψ′ : Rker(ψ
ab,`

) → ker(ψ
ab,`), centralizing ker(ψ′). Then

the restriction of ψG,` over ker(ψ
ab,`) is ψ′.

Proof. Suppose ψ is a central cover with commutator kernel, but it is not a

Frattini cover. Then, their exists H1 < H for which the restriction of ψ is surjective

to G. Then H = ∪ti=1H1ci with t > 1, with the ci s coset reps that centralize H1.

Thus, commutators in H have the form

ch1c
′h′1(ch1)−1(c′h′1)−1 = h1h

′
1(h1)−1(h′1)−1 with c, c′ ∈ ker(ψ), h1, h

′
1 ∈ H1.

This is, all commutators reside in H1, and ψ does not have commutator kernel.

A representation cover arises by taking A = H2(G,Z) and the identity map in

Hom(H2(G,Z), A). The fiber of h lying over this element then includes an element

identified with 0. Once we have one representation cover, ψG : RG → G, and

we know it is Frattini, then it has a representation as the fiber product over G

of ψG,` : RG,` → G where ker(ψG,`) is the ` part of ker(ψG). Then, ψG,` is an

`-representation cover of G. �

Remark 2.7 (Direct sum in (3.17)). That the Ext and Comm sides are direct

summands of the middle term in (3.17) is based in the proof on the choice of

(coefficient) chains used. For q = 2 see this directly. Everything on the Ext side
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is a sum of quotients from M̂
ab
→ M . Everything on the Comm side is a sum of

quotients of the finite representation cover.

There is no overlap between the summands on the two sides as the kernel of

extensions of G, because the Ext side is a quotient of a free abelian group. A free

abelian subgroup of a finitely generated abelian group automatically splits off by

the elementary divisor theorem.

Remark 2.8 (Fiber products vs Frattini covers). Forming a universal Frattini

cover (Lem. 1.16) uses subgroups of a fiber product of two Frattini covers, Hi, i =

1, 2, of G. Then, a subgroup of H1×GH2 that is a Frattini cover of G automatically

factors surjectively through both Hi s.

2.2. Example lift invariants vs Hurwitz components. We know C com-

mutators – represented in the quotient VG =
∏
`||G| VG,` by SC∗C of Def. 2.1 –

correspond to distinct braid orbits in Ni(G,C). Those modules have a description,

as a quotient of H2(G,Z) (resp. H2(G,Z`)) – a second homology group, where G

has trivial action on Z (resp. Z`) [Br82, p. 2].

We achieve all such C commutators, given the necessary conditions, (3.15), on

C given the following ubiquitous condition:

(3.19) Each element of ∗C appears in C with “high” multiplicity.

The condition in this case comes from Lem. 1.7. Finite group homology and coho-

mology are finite groups, annihilated by |G| [Br82, III. Cor. 10.2]. So the kernels of

representation covers, and the quotients above, are bounded by invariants depen-

dent only on G, giving a lower bound on the cardinality of braid orbits on Ni(G,C)

assuming (3.19).

Further reminder: We need the definition field of Hurwitz space components

corresponding to braid orbits for all applications of this paper. That leaves these

goals for given G and ∗C.

(3.20a) When is there a C with support precisely in ∗C with just one braid orbit

on Ni(G,C) with general lift invariant 1?

(3.20b) Effectiveness 1: Assume (3.19) holds, components correspond to the gen-

eral lift invariant, and we know their definition fields?

(3.20c) Effectiveness 2: Same as (3.20b) except we are either effective on (3.19)

or we may drop it altogether?

2.2.1. Examples with liftable conjugacy classes. Theoretically, from the last

paragraph of Prop. 1.8, all we need to finish Prop. 5.9 is the conclusion (3.20a)

(for all G). That gives us a component of H(G,C)in over Q from the component

associated with a trivial (general) lift invariant. Our examples require knowing
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something about the following.

(3.21) Which elements of ∗C are liftable. What is VG/SC∗C?

The spin cover, ψ : Spinn → On(R), n ≥ 3, of the orthogonal group – the most

famous central Frattini extension – arises in quantum mechanics to the hermitian

observable: spins of electrons around atoms. Regard ker(ψ) as {±1}. The natural

permutation embedding of An in On induces

ψ : Spinn
def
= Ân → An, abusing notation a little.

All this section’s examples, of An and Sn, involve the spin cover. Ex. 1.33 has more

perspective using the Universal Frattini cover of An.

Two conjugacy classes in An stand out: C3 of 3-cycles, and C22 of products of

two disjoint 2-cycles. Exs. 2.9 has the case where ∗C = {C3}, a definitive answer

in this case to Prob. 1.1, identifying all components by values of the restricted lift

invariant. It also notes that if ∗C contains C22 , then the general lift invariant (in

VG/SC∗C = {1}) must be trivial, even if C contains C22 only once. Exs. 2.10 notes

recent results for An, for low values of n, allowing ∗C to be arbitrary.

Example 2.9 (An Examples I). With the spin cover as above, [BFr02, Prop. 5.10]

uses the Clifford algebra to conclude this. For g ∈ C22s (products of 2s disjoint 2-

cycles), any lift ĝ ∈ Ân of g has order 4 if s is odd and 2 if s is even. If s = 1,

then, there is an h ∈ Ân such that hĝh−1ĝ−1 is the nontrivial element in Ân. This

follows by direct computation in A4 using the notation of M(x, y, z) from (5.5):

M(1, 0, 0)M(0, 1, 0)M(1, 0, 0)−1M(0, 1, 0)−1 = M(0, 0, 1).

Use A4 ≤ An acting on {1, 2, 3, 4} in An to see this applies to C22 in any An.

Here’s what that means. Let C = C3r1 ·(22)r2 refer to the repetition of r1 (resp. r2)

of C3 s (resp. C22 s) in An. For r2 ≥ 1, the general lift invariant (Def. 2) can only

take the value 1 even under assumption (3.19).

If, however, r2 = 0, then [Fr10, Main Thm.] shows the lift invariant is (−1)n−1

starting with −1 at n = 4 for r = n−1 (covers of genus g = 0). It assumes both

values for r ≥ n (g > 0), precisely distinguishing braid orbits (Hurwitz space

components) of all components when r2 = 0. One hard point:

(3.22) You can braid the outer automorphism (Rem. 3.9) from Sn.

Thus, in H(An,C3r )
in → H(An,C3r )

abs, for all r ≥ n−1, each image component

has only one preimage. 4

Again, under assumption (3.19), (3.22) can be applied to all finite groups in

Prop. 5.9, if ∗C contains all classes of G.
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Alternating group examples distinguish between Hurwitz spaces of genus g = 0

and g > 0 covers (as in Ex.2.10). §2 compares this computation with new cases of

a computable lift invariant.

Example 2.10 (An Examples II). Refer to g ∈ An as pure-cycle if it has

but one disjoint cycle of length exceeding 1. When that length, l is odd, define

ω(g) = (l−1)2

8 . For a general odd order g ∈ An define ω(g) as the sum over its

disjoint cycle. There is a precise formula for the lift invariant in Ni(An,C) – in

±1 – when C consists of odd order classes, and g = 0 (absolute Hurwitz spaces)

extending the case C = C3n−1 in Ex. 2.9:

(3.23) sAn,C = (−1)
∑
ω(gi), ggg ∈ Ni(An,C) [Se90a] or [Fr10, Cor. 2.3].

Def. 1.4 references a braid orbit, and a particular central Frattini cover. We

assume the Spin cover. More significantly the result is independent of the braid

orbit. Reference #2 in (3.23) inducts using only C3n−1 modulo one case: Computing

the lift invariant of ((1...k)−1, (1 2 3), (1 4 5...k)) for odd k ≥ 5, where reference #1

uses the Clifford algebra.

[LO08] considered ]absolute Hurwitz spaces with covers in Ni(G,C)abs having

genus 0, and pure-cycle classes: They conclude transitive braid action on Nielsen

classes. That overlaps with part of the 1 braid orbit (Ex. 2.9) result for genus zero

when ∗C = {C3}. [LO08, §5] suggests that all these Hurwitz spaces are without

significant distinguishing properties.

[Fr09, §9], however, dispels that by considering the inner (rather than absolute)

Hurwitz spaces. [Fr09, Prop. 5.15] uses the sh-incidence matrix to display cusps,

elliptic fixed points, and genuses of the inner Hurwitz spaces in two infinite lists

of [LO08] examples. In one there are two level 0 components (conjugate over a

quadratic extension of Q). For the other just one. These examples have seriously

diverging behaviors in their associated Modular Towers, at their level 1 cusps.

Similarly, going beyond one conjugacy class, [JMS15] treated just A5, but

possible conjugacy class collections, C, in that group. After an initial step of list-

ing the nonempty Nielsen classes – mostly from checking non-negative genus from

Riemann-Hurwitz – they find in each case, the lift invariant determines the or-

bits. They concentrated on inner Nielsen classes, the harder case, and noted (as in

Ex. 2.9), the lift invariant is trivial if C22 is contained in the collection.

Respectively, Firkin and James, students of Shpectorov, didG = A4 andG = A6

for Nielsen classes of genus g = 0). For genus g > 0, but ∗C = {C3}, A6 was a

tough case in [Fr10] requiring special techniques. 4

2.2.2. Examples with non-liftable classes. In Sn the standout class is C2 of 2-

cycles. Ex. 2.11, with ∗C = {C2} reappears constantly in the literature, since its
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contribution to Prob. 1.1 is so definitive: one Hurwitz space component, a general-

ization of the connectedness of the moduli of curves of genus g. Alas, it is totally

misleading about general expectations for complicated reasons.

Despite the extremely short proof ([Vo96, Lem. 10.15], repeated essentially

from [BiFr86]), this finesses that there are nontrivial central Frattini extensions.

That is, it is not obvious that VSn/SC∗C = {1}. So, it must be that the class of

2-cycles, C2 in Sn is unliftable in any nontrivial quotient of VSn . Otherwise, as in

Prop. 1.8, consider C22t denoting 2t repetitions of C2. Then, for t large, a central

2-Frattini extension of Sn with commutator kernel (of order 2) would give at least

two braid orbits on Ni(Sn,C22t).

Prop. 5.9, (3.64a) has a general case when VG/SC∗C = {1}, showing that every

group has a finite cover, and corresponding rational classes, where this applies.

Finally, Cor. 1.6 carries out, in more detail, a special case of Cor. 2.6, the start for

the part of this paper that explains its title.

Example 2.11 (Simple branching). [Se92, p. 97–98] lists three separate copies

of Z/2 that realize the inequivalent extensions given by H2(Sn,Z/2) (2nd coho-

mology with A = Z/2 in (3.17)), as kernels of central Frattini extensions. (Said

differently.) This presentation was early in the topic of lift invariants. Its purpose

there – close to the end of [Se92] was toward quadratic forms. I now show directly

VSn/SC∗C = {1} when ∗C = {C2}. Reason: either only single commutators appear

(Def. 1.4), so C2 is unliftable, or the lift invariant is constant on the Nielsen class.

In writing H2(Sn,Z/2) = (Z/2)2, there is a contribution from the Ext (left) side

of (3.17), since Sn/[Sn, Sn] = Z/2. We have already shown we don’t have to deal

with that for separating braid orbits. Still, this shows (Sn, {C2}) gives a mixing of

the two types of central Frattini extensions. The H2(G,Z/2) (right) side of (3.17)

is another matter. Serre notes (from the [Atlas]?) that this extension is related to

that we used above by restriction. By accepting facts about An, we can get that

from just the case n = 4, where we also see that C2 is not liftable.

Use the M(x, y, z) matrix notation in §3. Indeed, we only need that the small

Heisenberg presentation for A4 = (Z/2)2×sZ3 extends (as a central Frattini cover)

to S4 = (Z/2)2 ×sS3. Our action of Z/3 on M(x, y, z) leaves z untouched, and it

regards (x, y) as the first two coordinates of Z3, acting as a cycle (x, y, t) 7→ (t, x, y)

by the 3-cycle α. Then, mod out by the subspace generated by (1, 1, 1). Now extend

the natural permutation representation from A4 to S4. In this extension, an element

of C2 lifts to an element of order 2. This is an explicit description of the one case

Serre doesn’t do (it is useful to solve his exercise [Se92, 2 c), p. 98]).

We show C2 is unliftable. Liftability means that, for g1 ∈ C2, |Cg1 | = Cĝ1 for

g1 ∈ Ŝn over g1. Take any g2 ∈ C2 with support disjoint from that of g1. It, too, will
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have a well defined lift, ĝ2. Then, ĝ1ĝ2 is a lift of g1g2 to Ŝn. Consider, for ĥ ∈ Ân,

ĥĝ1ĥ
−1ĥĝ2ĥ

−1 def
= (ĝ1ĝ2)ĥ.

Then, C22 would be liftable if, when (ĝ1ĝ2)ĥ lies over ĝ1ĝ2, then ĥĝ1ĥ
−1 = ĝj , for

j = 1 or 2. Since this expression is true in Sn (without the ŝ), and the elements

with the ŝ on them are uniquely defined, the result follows. Since the conjugacy

class C22 is the same in An and in Sn, this gives g1g2 a unique lift in Ŝn, so certainly

in Ân, contrary to Ex. 2.9. 4

Assume G is a group for which we know the primes `||G
ab
| (for which G is not

`-perfect). As previously, we may deal one ` at a time for they recombine using the

fiber product over G. Therefore, we also fix `. In case you haven’t guessed by now,

the biggest mystery is what values of A, an abelian ` group, are sufficient to pick

up `-representation covers (Def. 1.10).

(3.24a) Since (3.17) is split, every ` central Frattini cover of G has a canonical

Comm (which may be trivial) cover attached to it.

(3.24b) For any Comm cover ψ : H → G, | ker(ψ)| = `u is maximal value when

ψ is an `-representation cover.

(3.24c) As with the fundamental Frattini cover property (Lem. 1.16), the fiber

product of any two central `-Frattini covers ψi : Hi → G, i = 1, 2, has a

subcover ψ : H → G that is (central) `-Frattini.

(3.24d) If ψ1 (resp. ψ2) is an Ext (resp. Comm) cover in (3.24c), both nontrivial,

then H is a proper subgroup of the fiber product.

We are not likely to have a priori knowledge of u in (3.24b). So, it makes sense

to take A = Z/`, and deal with fiber products of the Ext and Comm covers

associated with that choice in H2(G,Z/`), if warranted going to higher values of u.

Inside H2(G,Z/`) any extensions (covers) would have associated factor sets, and

those have an abelian group structure – can be added, another way to combine

them.

§2.3 reviews an effective computation of the 1st level of the universal `-Frattini

cover of G in [Fr02, Prop. 2.8]. That can classify Schur quotients: central `-Frattini

covers of ψ : H → G with Z/` kernels. [Fr02, §4] generalizes Serre’s example

(G = Sn, ` = 2) alluded to in Ex. 2.11 by using what happens to the order of lifts

of ` order elements going from G to H to distinguish these Schur quotients.

2.3. Properties of `MG. Ch. 6 §1.6 shows how, in practice, properties (and

proofs) in Prop. 2.18 work. It is a primer on Loewy displays, and how they tie

irreducible representations together into (sometimes very) long chains. It also should

dissuade anyone from thinking that production of characteristic `-Frattini covers

of, say a simple group, follows from elementary principles.
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The proof of Prop. 2.18 uses Prop. 1.30, when an `-Sylow of G is a normal

to explicitly construct the characteristic module `MG in all cases. To a modular

representation theorist we haven’t described such modules unless we have written

out the Loewy display of this indecomposable module completely, as described by,

say, the Heller description Prop. 2.16. Our needs are often much less. Example:

Rem. 1.2 notes our concern with the appearance of 111G in `MG.

Recall, `F̃t is pro-free pro-` group of rank t. Explicate means to give the module

in terms of its Loewy decomposition into simple Z/`[G] modules. Here we run

into the big difference between irreducible (or simple Z/`[G] modules – no proper

submodules – and indecomposable modules – no proper direct summands. Those

are the same when 6̀ ||G|, a condition that never applies with `-Frattini covers and

their characteristic modules.

2.3.1. Submodules of projective modules. A good part of homological algebra

is built on the construction of submodules of projective modules. Within that, we

must distinguish when a submodule of a projective is a direct summand.

Lemma 2.12. A direct summand, P ∗, of a project module P is projective. Con-

sider a surjective map from a projective module αi : Pi →M , i = 1, 2. Then:

(3.25) the fiber product P1 ×M P2 is isomorphic to P1 ⊕ ker(α2) ≡ P2 ⊕ ker(α1).

Proof. Consider the first sentence. Given αP∗ : P ∗ → M and β : N → M

onto morphisms, extend P ∗ to αP : P →M just be mapping the complement to P ∗

to 0. Then use projectivity of P to construct βP : P → N for which β ◦ βP = αP .

Form βP∗ : P ∗ → N by restricting βP to P ∗ to conclude P ∗ is projective.

Now consider the fiber product. Since P1 is projective, its projection to P1

splits. The kernel of that projection is ker(α2). Combining that with the result of

projection to P2, that proves (3.25). �

Any Z/`[G] module M has a smallest projective cover P → M . That means,

for no direct summand P ∗ of P does its map to M go to 0. This defines

(3.26) 0→ Ω(M)→ P →M → 0.

Benson [Be91] calls this Heller’s construction [He61]. Lem. 2.13 shows the unique-

ness of Ω(M). Inductively, for i ≥ 1, define Ωi(M)
def
= Ω(Ωi−1(M)).

All modules are finitely generated Z/`[G] modules. As already appeared in

Prop. 2.3, ExtiG(M,N) and Hi+1(G,N), even when computing the latter is the

main goal, often appear together. They do so in Prop. 2.16. This follows [Se88]

and is based on [Fr95, Lem. 2.3], but with many more details.

We use this to describe `MG
def
= `M0,1, the characteristic Z/`[G] module, (1.10).

Ch. 6 §1.4 reminds of the following topics.
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(3.27a) Hi(G,N) is just Exti(111, N) = ExtiG(111, N) [Nor62, p. 223, Thm. 4].

(3.27b) Ext1(M,N) is equivalence classes of extensions ofM byN [Nor62, p. 129].

(3.27c) Projective and injective Z/`[G] modules are the same; a maximal simple

quotient determines an indecomposable projective [Be91, p. 10, §1.6].

(3.27d) Resulting exact sequences of “cohomology” from applying Ext• (or H•)

to a short exact sequence of modules in either slot (see (3.30)).

Lemma 2.13. Extension (3.26) canonically defines αM ∈ Ext1(M,Ω(M)), uniquely

up to equivalence for extensions. Similarly, there is the operator Ω−1(M): the cok-

ernel of the embedding of M in a minimal injective module. Here, P is a minimal

injective module containing Ω(M).

Proof. Suppose P ′ is another projective module with the same properties.

Then, their projectivity gives maps

νP ′,P : P → P ′ and νP,P ′ : P ′ → P

each commuting with the surjective maps from P and P ′ to M .

Define f = νP,P ′ ◦ νP ′,P (acting on the left), and the composition of f , n times,

by f◦n. Since Kn
def
= ker(f◦n) is increasing with n, it stabilizes for large n.

For such an n f◦n
def
= F : Pn

def
= im(f◦n)→ Pn

is an isomorphism. Thus,

P = Kn ⊕ Pn : direct sum decomposition into kernel and image

(as vector spaces, that happen to be G modules). As Kn – a projective summand of

a projective module – goes to 0 under the map from P to M , from the minimality

of P , it must be trivial. That proves f is an isomorphism defing Ω(M) uniquely.

Now apply (3.27c) to conclude P above is both the minimal projective covering

M and the minimal injective containing Ω(M). �

2.3.2. Homological characterizations of `MG. Lem. 2.15 gives a simply-stated

characterization of a Frattini cover ψ : H → G as an element αψ ∈ H2(G, ker(ψ)).

We put that to use in Prop. 2.16 based on the fundamental objects of modular

representation theory, projective indecomposable Z/`[G] modules.

Definition 2.14. An α ∈ Exti(M,N) is supported on a submodule N ′ < N if

α is the image of some α′ ∈ Exti(M,N ′) from the natural map to Exti(M,N).1

The word universal in (3.28c) means each α ∈ H2(G,N), not supported on a

submodule of N is the image of α
`ψ from a homomorphism ker(`ψ)→ N .

1The special case , for M = 111G: α ∈ Hi(G,N): α is supported by Z/`[G] module N ′ ⊂ N if

α is the image of α′ ∈ Hi(G,N ′) (from inclusion).
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Lemma 2.15. As above, denote by αψ ∈ H2(G, ker(ψ)) the equivalence class of

the cover ψ : H → G. Then ψ is a Frattini cover if and only if αψ is not supported

on a (proper) submodule, N ′, of ker(ψ). This is equivalent to αψ does not go to 0

in H2(G, ker(ψ)/N ′).

Here are three properties of the extension 1
`ψ : E = 1

`G→ G.

(3.28a) 1
`ψ is not supported on a submodule of ker(1

`ψ).

(3.28b) 1
`ψ is minimal among `-projective covers of G with Z/`[G] kernel.

(3.28c) (ker(1
`ψ), α1

`ψ
) is universal among pairs (N,α) with α ∈ H2(G,N) not

supported on a submodule of N .

Proof. We will use the following principle. Given a Z/`[G] module homomor-

phism µ : N ′ → N , an extension ψ′ : E′ → G defined by α′ ∈ H2(G,N ′) naturally

maps to the extension defined by the image, α, of α′ in H2(G,N). See this directly

from the factor set c′e(g1, g2), g1, g2 ∈ G defined by α′, Ch. 1 §1.2.2.

Recall: if s′ : G→ E′ is a section, then with s(gi) = n′i, i = 1, 2,

s′(g1)s′(g2) = c′e(g1, g2)s′(g1g2), defines c′e : G×G→ N ′.

Regard ψ′ as giving a group structure on N ′ ×G (with right action) by(
g1 0
n′1 1

)(
g2 0
n′2 1

)
=
(

g1g2 0
n′1·g2+n′2+c′e(g1,g2) 1

)
.

Then the image α is defined by the factor set

G×G→ N : (g1, g2) 7→ µ(c′e(g1, g2)).

Substitute any (n1, n2) ∈ N ×N into this formula to get ψ : E → G, defined by α,

giving the homorphism from E′ → E commuting with the maps to G.

Suppose ψ : H → G is supported on a submodule N ′ < N , by α′ ∈ H2(G,N ′).

Then, from the above, the image of the extension, E′, given by α′ is a proper

subgroup of H, that maps surjectively to G by ψ. Thus, ψ is not a Frattini cover.

Finally, consider the part of the exact sequence of cohomology in (3.27d) by

applying H2(G, ·) to 0→ N ′ → N → N/N ′ → 0. Then,

(3.29) α′ ∈ H2(G,N ′) 7→ αψ ∈ H2(G,N) 7→ 0 ∈ H2(G,N/N ′).

That is, the cover E′′ → G with kernel N/N ′, from the image of αψ, splits the cover

ψ; again a contradiction to ψ being a Frattini cover.

For (3.28b) use that `ψ̃ : `G̃ → G is universal for covers of G with profinite

pro-` kernel. Consider any cover ψH : H → G with Z/`[G] kernel. Then there is a

cover µ : `G̃→ H for which ψH ◦ µ = `ψ̃, and µ factors through 1
`ψ : 1

`G→ G.

This shows 1
`ψ is projective for covers to G with Z/`[G] kernel. To show it

is minimal among such projective covers, assume ψH is projective. Then, there is

µ′ : H → 1
`G that commutes with the maps to G. Again use that 1

`G is Frattini to

conclude µ′ is surjective. So, 1
`ψ is minimal in the sense of (3.28b).
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The arguments above have already shown (3.28c) from the universality of 1
`ψ

when it is combined with the characterization of Frattini covers above. �

Dimension shifting to comfort: The proof of Prop. 2.16 uses dimension shifting to

take advantage of computing Exti(M,N) from a projective projective cover of M .

We know from Lem. 2.15 that the universal Z/`[G] moduleN having α ∈ Ext2(111, N)

not supported on a submodule N ′ < N is `MG.

We now generalize this property, for a given Z/`[G] module M , to find a uni-

versal pair (·, α·), α· ∈ Exti(M, ·) when the module N put in the place holder · is

not supported on a submodule. Recall (3.26):

(3.30)
0→ Ω(M)→ P →M → 0 defines αM,1 ∈ Ext1(M,Ω(M)).

Dimension shift in the M position: Exti(M,N) = Exti−1(Ω(M), N).
2

Prop. 2.16 uses both the contravariant (M) slot of Ext•(M,N) (here); then, in

assiduously applying the definition of ‘not supported” on a submodule, the covariant

slot (N). We very much need both slots when we end up at the same place in a

particular value E2(M,N).

Proposition 2.16. Consider the pair (Ωi(M), αM,i), defined from dimension

shifting in (3.30) from (Ω(M), αM,1) for i ≥ 1. It has these properties.

(3.31a) αM,i is not supported on a submodule of Ωi(M) ⇔ it doesn’t go to 0 in a

nontrivial quotient of Ωi(M).

(3.31b) It is universal for elements of α ∈ Exti(M,N) with α not defined on a

submodule of N .

In particular, identify `MG as Ω2(111G). It is an indecomposable module.

Iterate this to see it applies with (Gk,Mk,k+1) replacing (G, `MG), k ≥ 0.

Proof. We do an induction first assuming (3.31) holds for i = 1:

(Ω(M), αM,1) is not supported on a submodule, and universal.

For the induction step from i−1 to i, assume – for all M – that (Ωi−1(M), αM,i−1)

is universal for α ∈ Exti−1(M,N), for α not supported on a submodule of N .

Not-supported on a submodule hypothesis: Assume (N,α), α ∈ Exti(M,N) is

not supported on a submodule. Then, α′ ∈ Exti−1(Ω(M), N) = Exti(M,N), the

image of α, is also not supported on a submodule N ′ < N . Otherwise

α′′ ∈ Exti(M,N ′) = Exti−1(Ω(M), N ′)

would have image α in Exti(M,N), contrary to our assumption. By the induction

hypothesis, αM,i−1 ∈ Exti−1(Ω(M),Ωi(M)) maps to α′ from some homomorphism

2This is the exact sequence of cohomology result whereby

. . . Exti−1(P,N)→ Exti−1(Ω(M), N)→ Exti(M,N)→ Exti(P,N) . . .

is exact and P is projective.
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µ : Ωi(M)→ N . Everything pulls back to Exti, including the homomorphism effect

of µ on Exti(M,Ωi(M))→ Exti(M,N).

Conclude the universal property for i. The equivalence of the statements in

(3.31a) is the exact Ext analog of the cohomology observation in (3.29).

Proof for the case i = 1: For the initial induction step we show αM,1:

(3.32a) 67→ 0 in Ext1(M,N) with N a nontrivial quotient of Ω(M); and

(3.32b) it is universal for α ∈ Ext1(M,N) for N unsupported on a submodule.

Suppose (3.32a) is false for N = Ω1(M)/O′. Then, if O′ ≤ O′′ < Ω1(M),

from the analog argument of (3.29), conclude αM,1 7→ 0 in Ext(M,Ω1(M)/O′′).

Therefore, with no loss we may assume Ω1(M)/O′′ = B is a nontrivial simple

quotient of a direct summand P ′ of P in the definition of Ω(M), and P → B splits.

That splitting contradicts that B uniquely determines P ′, (3.27c).

Finally, return to α ∈ Ext1(M,N) not supported on a submodule of N , with α

corresponding to the short exact sequence N →W →M . Since P is projective, the

morphism P →M induces the short exact sequence Ω(M)→ P
τ−→W that gives a

natural diagram:

(3.33)

Ω(M) −→ P
ψ−→ My τ

y ||
N −→ W −→ M

From [Nor62, p. 129], the exact sequence of cohomology on the covariant

2nd slot produces Ext1(M,Ω(M))→ Ext1(M,N). The element of Ext1(M,Ω(M))

defining the upper row of (3.33) maps to the element of Ext1(M,N) defining the

lower row of (3.33). This shows universality of the upper row extension.

Indecomposability of `MG: Take M = 111G. In (3.28c), we have established that

α111G,2 ∈ H2(G, `MG), the universal Frattini cover with Z/`[G] kernel, is the uni-

versal object for Ext2(111G, N) = H2(G,N), the formula given by (3.27a). Therefore

the above shows `MG = Ω2(111G). We give two arguments for its indecomposability.

Here is a version of the argument in [Be91, p. 11, Exec. 1]. Up to a direct

summand by a projective module, Ω−1(Ω(M)) = M . Assuming M has no projective

summands, since the powers of Ω are all additive operators, M is indecomposable

if and only if Ω1(M) is. Now use that, from (3.26), the operators Ω give objects

minimal in the sense of having no additional projective summands. Therefore, since

111G is indecomposable and Ω2(111G) has no projective summands, it is too. �

Remark 2.17 (Significance of `MG indecomposability). Knowing from Prop. 2.16

that `MG is indecomposable allows displaying explicitly some of the territory that
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has yet to be touched by the RIGP, and further, to bound and make connec-

tion to classical situations. In, however, considering its relation to the OIT, we

do use `-Frattini extensions ψ : H → G where ker(ψ) is significantly decompos-

able. The standout example is where we go from a sequence of `-Frattini Nielsen

classes {Ni( k+1
` G,C)}∞k=0 to Jacobian Nielsen classes (formed canonically) denoted

{Ni( k+1
` G

jac
,C)}∞k=0. This, for example, occurs in both Serre’s case Ch. 6 §3.3 and

in our illustrating case Ch. 5 §4, wherein the Z/`k[G] modules in the kernel of

k+1
` G

jac
→ G are decomposable.

2.3.3. ` and `′ elements in k
`G. There are several explicitness questions on the

construction(s) in Prop. 2.16, should they be necessary to determine appropriate

properties of MT levels. Use the notaton of Ch. 1 (1.9).

(3.34a) Can you seriously construct the modules `Mk,k+1(G), inductively?

(3.34b) Ditto for the groups k
`G, at least to determine appropriate properties?

Ch. 6 Prop. 1.27 and Prop. 1.28 combined with §1.6 – to show it works – demon-

strate a reasonably positive answer to both these questions. The context, though,

of this book isn’t to push on in this direction without a guide from the arithmetic

geometry questions about Hurwitz spaces.

That is, the problem we emphasize isn’t to classify the `-Frattini modules.

Rather, where they arise for any pair (G, `), especially for G that is `-perfect, they

pose simply stated problems, interpreted on MT levels, that relate the RIGP

and theOIT. These problems take advantage of the attention brought, and value

adhering, to modular curves. Prop. 2.18 is the archetype of a problem that translates

to group theory properties immediately applicable to MT levels.

Proposition 2.18 (` pieces: Part 3). The `′ elements generate G, if and only

if, G is `-perfect. If G is centerless, and `-perfect, then so are k
`G, and k

`Gab
, for

k ≥ 0. Further, for g ∈ G:

(3.35a) if (ord(g), `) = 1, then g has an `′ lift all the way to `G̃;

(3.35b) if (ord(g), `) = ` and kg ∈ k
`G, (or in k

`Gab
), k ≥ 0, lies over g, then

ord(kg) = `k · ord(g)

Proof. [BFr02, Lem. 3.19] shows that the collection of `′ elements generate

G if and only if it is `-perfect. The argument is quite simple, for `′ elements generate

a normal subgroup of G. Then, the quotient by that subgroup must be an `-group,

that therefore has a Z/` quotient. Further, if G has a Z/` quotient, some lift of an

order ` element in it is necessary to generate G.

[BFr02, Prop. 3.21] does the inductive argument that if 0
`G = G is centerless

and `-perfect, then so is k
`G for all k. Assume, for our inductive hypothesis that k

`G

is centerless and `-perfect. Suppose α : k+1
` G→ Z/` is a cover. Then, ker(α)→ k

`G
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induced by the canonical map k+1
` G → k

`G – a Frattini cover – implies ker(α), a

proper subgroup of k+1
` G is not onto k

`G.

Thus, ker(α) has image an index ` normal subgroup of k
`G. That gives k

`G a

Z/` quotient, contrary to our assumptions. Therefore k
`G is `-perfect.

Now we show k+1
` G has no center. Consider the simple module 111G = 111. [Fr95,

Lem. 5.6] characterizes that k+1
` G is centerless if (and only if):

(3.36a) k
`G has no center; and with notation of (??),

(3.36b) `Mk,k+1 has no k
`G subquotient of Loewy type 111→ 111.

If a G module has Loewy type 111→ 111 (distinct from 111⊕111), this gives a represen-

tation of G of form g 7→
(

1 ag
0 1

)
. If such exists, then this gives a homomorphism,

G 7→ Z/`, from g ∈ G 7→ ag. Apply this to k
`G, which, from above, is `-perfect. So

(3.36b) holds. This concludes the proof of the proposition’s first part.

From [Be91, Prop. 3.1.2], an irreducible module at the far right of the Loewy

display of a principle indecomposable is also at the far left of the Loewy display.

Thus 111 can’t appear at the far left of the Loewy display of P either. Prop 2.7,

however, says Ω2(111) = kern/kern+1 is some part on the left of the P Loewy display.

Thus 111is not a submodule of kern/kern+1. Thus, the Center Hypothesis holds for

1G̃.

Assume G [Fr95, Lem. 3.6] has the argument that if k`G = Gk is centerless, then

so is Gk+1, and kerk / kerk+1 has no subquotient of Loewy type 111→ 111. Inductively

use that if Gk is centerless, then the only way Gk+1 can have a center is if 111Gk

appears at the far left of the Loewy display of Mk.

[FrK97, Rem. 2.5] Gives an example of a Frattini kernel that decomposes.

Frattini covers ψi : Hi → G, i = 1, 2 where the Hi s are simple nonisomorphic

modules. Then the fiber product is still Frattini and has ker(ψ1)⊕ker(ψ2) as kernel.

Two series of simple groups agree when n = 8: A8 ?= SL(4,Z/2). Let M4 be

the standard 4 dimensional representation of SL(4, Z/2). [Be] shows H 2 (A8 , M4

) has dimension 1. This gives a Frattini extension of A8 not factoring through the

universal central extension of A8. It is an example of the above.

This is in [Be] D. J. Benson, The Loewy structures for the projective indecompos-

able modules for A8 and A9 in characteristic 2, Comm. in Alg. 11 (1983), 13951451.

[FrK97] says [Be2], the wrong reference.

Lem. 2.6 there is a one-one correspondence between simple G modules and

simple k
`G modules. Also for M simple, the principle indecomposable for M as a

G module is a quotient of the principle indecomposable for M as a k
`G module.

Therefore expression (2.10) shows how to construct k
`G inductively as given in

Prop. 2.7. Section II.E actually constructs Ã5 1 2 and this gives a posing of the

questions about it, that are essentially answered in [BFr02].
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We need to compare P̃×sNP /P with ψ−1(NP ) and ψ̃ : `G̃→ G, and to see that

indecomposable for `MG, detemines it as a component of the induced from `MNP .

Then, for any C that are `′ classes (assume generating) then the inner Hurwitz

spaces are all fine moduli. Part of it appeals to Fr95, Lem. 3.6]: Gk+1 is centerless

if Gk has no center, and kerk / kerk+1 has no subquotient of Loewy type 111 → 111.

That module is distinct from 111 ⊕ 111 and it comes from a nontrivial representation

of Gk of form g 7→
(

1 ag
0 1

)
giving the map By hypothesis this doesn’t exist. (see

the rest)

RETURNM

2.4. Lift invariant effect on Definition fields. Given Ni(G,C)in we com-

pare the definition fields of the components of Hurwitz spaces with those of Ni(Ĝ,C)in

with Ĝ → G a central Frattini cover from the Comm side, as in Prop. 2.6. RE-

TURNM

Proposition 2.19.

3. MTs and the RIGP

Most groups are neither simple nor solvable. For example, starting with any

one (finite) G, `-perfect and centerless, we can canonically create infinitely many

`-perfect and centerless covers of it.

All those covers give opportunities to relate the RIGP and the OIT that

enhance classical results, while simultaneously posing novel problems with good

prospects for technical progress.

§3.1 explains this, starting with an elementary RIGP success, followed by a

listing of progress barriers. Modulo being `-perfect and centerless, no G escapes

being entwined with some of the most honored classical unsolved problems we

know. §3.3 explains the main conjectures, and puts them in a context with classical

diophantine conjectures.

We use the extension (3.37) to formulate a context for what is seriously unknown

about the RIGP. That moves us away from questions that are without structure,

say, about what isn’t known about realizing simple groups, even in §4.2.1 where

explicit Nielsen classes is the theme.

3.1. RIGP unknowns. From Ch. 1 (1.12), there is ν(G, `) > 0 and

(3.37) an extension 1→ (Z`)ν(G,`) → `G̃ab
`ψ̃ab−−−−→G→ 1,

universal for covers of G with abelian `-group kernel. Further, ν(G, `) > 1, unless

G has a rank 1 normal `-Sylow (Rem. 3.10).
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Consider a centerless group G, a prime ` for which G is `-perfect, and a rational

union (Def. 1.4) of distinct `′ (generating) conjugacy classes ∗C. There has as yet

arisen no obstruction to the following conjecture

Conjecture 3.1. For infinitely many C supported in ∗C – they must be ra-

tional unions of classes from the BCL, Lem. 4.1 – H(G,C)in(Q) 6= ∅.
Generally, with K a number field containing QG,∗C (from the BCL), the con-

clusion would replace Q in H(G,C)in(Q) 6= ∅ by K.

Definition 3.2. From Cor. 4.7, the conclusion of Conj. 3.1 is phrased as G has

infinitely many regular realizatiions supported in ∗C over QG,∗C

Now consider the sequence of groups in (1.12):

(3.38) `G̃ab
/`kVG,`

def
= k

`Gab
→ G, k ≥ 0.

Since ∗C are `′ classes, Schur-Zassenhaus lifts these uniquely to `G̃ab
.

This makes sense of `H(G,C)in,rd def
= {H( k`Gab

,C)in,rd}∞k=0, a projective sequence

of Hurwitz spaces. The maps between the corresponding Nielsen classes induce the

Hurwitz space maps.

Definition 3.3. A M(odular)T(ower) is a projective sequence of (absolutely

irreducible) components H′ def
= {H′k}∞k=0 on `H(G,C)in,rd.

Actually, that is an abelianized MT. We occasionally adjust this to consider

the MT construction under these adjustments:

(3.39a) replacing k
`Gab

by k
`G, a full MT; or

(3.39b) replacing inner classes by absolute classes, when appropriate, as under the

`′ condition on H ≤ G in Prop. 1.29; or

(3.39c) dropping the extra equivalence of rd, and just considering inner or absolute

MTs; or

(3.39d) dropping the `-perfect condition on G in a special way.

Statements (3.40) combine Conj. 3.1 and the collection (3.38), toward question

(3.40) about (G, ∗C). Use rC as the number of classes in C.

(3.40a) As a function of k, where might you find Ck supported in ∗C with

H( k`Gab
,Ck)in,rd(Q) 6= ∅, k ≥ 0?

(3.40b) In (3.40a) is it possible that there might be an r0 for which a positive

conclusion holds with rCk ≤ r0 for all k.

It seems easier to solve the RIGP for the collection (3.38) if the only restriction

on ∗C is that it be `′. Even easier if we drop reference to Ck being, as in (3.40a),

supported in ∗C.
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Implications of (3.40): Prop. 3.4 shows – with the r0 constraint of (3.40b), but

without reference to ∗C – a single MT will have RIGP solutions land on each of

its levels.

Again, G is centerless and `-perfect, and K is a number field. We use the

following with Gk either k
`G or k

`Gab
and • any Nielsen class equivalence.

(3.41)
Going Down: If H(Gk,Ck)•(K) 6= ∅. Then, the same is true of
H(Gk′ ,Ck′)

•(K) with k′ ≤ k and Ck′ the image classes in Gk′ .

In the proofs of Prop. 3.4 and its corollaries p̂ppk denotes a point of H′k(K), k ≥ 0.

Proposition 3.4. Consider whether there can be any bound, r0, for which each

k
`Gab

has a K regular realization with no more than r0 branch points.

If so, then there exists C, `′ classes of G (rC ≤ r0), and a MT

(3.42) H′ = {H′k}∞k=0 ⊂ `H(G,C)in,rd for which H′k(K) 6= ∅, k ≥ 0.

Proof. There are only finitely many Nielsen classes Ni(G,C) with rC ≤ r0.

The RIGP realization assumption implies there are infinitely many pairs ( k`Gab
,Ck)

for which: H( k`Gab
,Ck)in(K) 6= 0, rCk ≤ r0, and a component H′k of H( k`Gab

,Ck)in

with a K point, also defined over K (the comments (2.52) and (2.53)). There are

two possible cases:

(3.43) S`′ : Infinitely many Ck consist of `′ classes; or S`: Not S`′ .

First assume S`′ , and restrict consideration to just those cases where Ck is `′. Then

(from Schur-Zassenhaus as previously), we may assume Ck is the canonical lift of

some C′k collection of `′ classes in G. There are only finitely many such. Without

loss, there exists infinitely many `′ collections Ck, k ∈ I, all lying over the same C′

collection of classes in G.

So, {H′k}k∈I is a cofinal collection of K components of {H(Gk,C
′)in}∞k=0 con-

taining K points. Apply (3.41) to replace k ∈ I by k ≥ 0. Such components form a

system, finite but nonempty at each level. By the Tychonov Theorem, that implies

there is a projective system of such components.

That gives an inner MT. To get a MT of reduced spaces, just apply reduced

equivalence, whereby K components and points are mapped (resp.) to K compo-

nents and points. To complete the proof of (3.42), we have only to show that S` is

not possible. The original argument is [FrK97, Lem. 4.1 combined with Thm. 4.4].

We give a variant on this.

Whatever are the realizations of k
`Gab

, as a function of k, there must be infin-

itely many that accumulate over a particular Nielsen class Ni(G,C) using (3.41).

Each such realization, say of k
`Gab

– for which, compatible with previous nota-

tion, we use the symbol p̂ppk – lies on a Hurwitz space component of a Nielsen class

Ni( k`Gab
,Cp̂ppk

)in with at most r0 classes in Cp̂ppk
.
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We are assuming S`′ doesn’t hold. So, again conclude from (3.41), with no loss,

there is a k0 with none of Cp̂ppk
or its images in k′

` Gab
being `′ for k ≥ k′ ≥ k0.

Again applying the Tychonov Theorem, we find a projective sequence of conjugacy

classes, {C′k
def
= C′p̂ppk}

∞
k=k0

, with these properties:

(3.44a) one of the C′k, say, C′k has elements of order divisible by `;

(3.44b) giving a projective sequence of g= {g′k ∈ C′k}∞k=k0
with `|ord(gk).

The proof of the proposition will follow if we show (3.45b).

(3.45a) For k ≥ k0, ord(g′k+1) = ` · ord(g′k).

(3.45b) The definition field of a component containing p̂ppk grows with k.

Apply (3.35b) to conclude (3.45a). Now we use that by applying the BCL

Cor. 4.7 to show (3.45b). A cover, p̂ppk ∈ Ni( k`G,Ck), to be defined over K requires

K ≥ Q k
`G,Ck

. So, [Q k
`G,Ck

: Q] ≤ [K : Q]. Also, Cm
k = Ck if and only if m ∈

(Z/NCk)∗ is fixed on Q k
`G,Ck

.

Yet, elements g′k ∈ C′k have order ord(g′k0) · `k−k0 . Since ker( k`Gab
→ G) is

abelian, The number of conjugates of g′k cannot exceed those of its image, g′0, in

G0. RETURNM

Therefore, the number of distinct classes among the powers of (g′k)m with m

running over a finite set of cosets grows with k, eventually exceeding the bound r0

on the total allowable conjugacy classes in Ck. This concludes the proof of (3.45b),

and thereby the proposition. �

Corollary 3.5. Continue the notation of Prop. 3.4 and consider the MT

{H′k}∞k=0 produced there.

(3.46a) There is no projective system {p̂ppk}∞k=0 of K points on {H′k}∞k=0.

(3.46b) Further, there can be no k0 for which |H′k0(K)| <∞.

In particular, if rC ≤ 4, high levels of `H(G,C)in,rd have no K points.

§3.2 starts with two, simply-stated, classically motivated, examples that show

what Prop. 3.4 is about. More than that, we find essentially every `-perfect finite

group has a version of this.

In the proof of Prop. 3.4, we considered one prime ` for which G is `-perfect,

and found if we had a prayer to bound number of branch points of the collection of

extensions, then eventually we could deal with one `′ collection of classes C for all

k, and the corresponding Q points would fall on the levels of one MT for (G,C).

Immediately that raises a bunch of issues.

Remark 3.6 (Two primes `1, `2). Suppose G is `i-perfect, i = 1, 2. Then, the

version of Prop. 3.4 for both primes would ask how to simultaneously locate one

such C with which we could find k1
`1
G×G k2

`2
G, for all (k1, k2). RETURNM
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Remark 3.7 (Bounded def. fields on MTs). Let K be a number field. For a(n

abelianized) MT to have K points at all levels, there must be a uniform bound on

the definition fields of all levels of the MT H′. We know how to find a cyclotomic

field that includes the definition field of all levels of `H(G,C)in,rd. The problem is

we need a MT whose (absolutely irreducible) component levels have a number field

definition bound. Yet, as we see clearly later, many MTs have no such bounding

definition field. So, it is valuable to know that for a given (G, `) we can explicitly

find many (G,C, `) for which there are such MTs. RETURNM

3.2. Context for Prop. 3.4. Conj. 3.8, the Main MT conjecture says (3.42)

is impossible. Subex.: Even for G = A5, where ν(G, 2) = 5, for no k > 0 has

2Ã5,ab/2
k ker(`ψ̃ab

) = k
2A5.ab

been realized (regularly or not) over Q.

Assume r conjugacy classes, C of G; all containing elements of order `′. Also, do

the dihedral group example, and turn back to the previously dihedral examples to

figure out what you want to say about the characteristic `-Frattini you care about.

3.2.1. The Main Conjecture.

Conjecture 3.8. High MT tower levels have general type and no Q points.

A special case (joint with Pierre Debes) is G = D`, ` an odd prime. That interprets

as existence of `k+1 cyclotomic points for each k, on hyperelliptic jacobians of a

fixed dimension d (independent of k, but the Jacobian may change with k).

Thm:[Outlined in [Fr06]] The Main Conjecture is true for r = 4, based on the

genus formula and methods for distinguishing different types of cusps. It suffices to

show the genus rises with the MT levels.

[CaTa09] proved the disappearance of rational points at high levels, without

engaging the reduced Hurwitz spaces or their cusps. [CaD09] showed the Torsion

Conjecture on abelian varieties =⇒ Q statement of the Main Conjecture in general.

We state Lem. 3.9 with the universal Frattini covers of G and H, but the same

results hold by replacing them by their abelianized versions (for example, k
`G by

k
`Gab

, and `
kH by `

kHab
). Let P` be an `-Sylow of G, and M0,1(G) = M(G) the

characteristic `-Frattini module.

Lemma 3.9. For H ≤ G, `H̃ embeds in `G̃. Further, for each k ≥ 0, k
`H

naturally embeds in k
`G. If rk(M1,0(W )) = rk(M1,0(G)), then `W̃ appears from the

universal `-Frattini cover ϕ̃ : `G̃→ G as ϕ̃−1(W ).

For H = NG(P`) this applies if rk(P`) = rk(M(G)).

Proof. The Sylow Theorems say an `-Sylow of `G̃ contains an `-Sylow of

ϕ̃−1(W ). So, the latter is profree, which is now a closed subgroup of a profree
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group of finite index, so profree. Prop. 1.30 characterizes `W̃ as the minimal cover

of W with pro-free `-Sylow.

That implies there is a natural map γW : ϕ̃−1(W ) → `W̃ commuting with the

map to W . As `W̃ is an `-Frattini cover of W , the map must be surjective. Since the

natural map ϕ̃−1(W )→W has a pro-` group as kernel, the natural map `W̃ →W

produces ψW : `W̃ → ϕ̃−1(W ) commuting with the projections to W .

The composition γW ◦ ψW (commuting with the projections to W ) is an en-

domorphism of `W̃ . The image of γW ◦ ψW is a closed subgroup of `W̃ mapping

surjectively to W . Again, from the Frattini property, γW ◦ ψW is onto. An onto

endomorphism of finitely generated profinite groups is an isomorphism [FrJ86,

Prop. 15.3]1. In particular, ψW is an injection.

The characteristic quotients have maps between them induced by ψW , and Wk

injects into Gk, inducing an injection of

kerk(W )/ kerk+1(W )→ kerk(G)/ kerk+1(G).

If (for k = 0), M(W ) and M(G) have the same dimension, they are isomorphic.

These groups characterize ker0(W ) and ker0(G). That implies they are equal, giving

an isomorphism of ker0(H) and ker0(G) in the special case. �

Let O`′(G) be the maximal `′ normal subgroup of any finite group G. Prop. 3.10,

uses the following designations: an `-Sylow of G is P`; its universal `-Frattini is P̃`,

and the rank of either is rk`
def
= rkG,`. It characterizes when the characteristic `-

Frattini module of G has rank 1; at its core it is a rather clear generalization of our

beginning case, where G = Z/`k+1 ×sZ/2.

Assume, as often, that G is `-perfect, but see Rem. 3.13.

Proposition 3.10 (ν(G, `) = 1). Schreier’s formula (1.7b) implies the rank of

ker(P̃` → P`) is 1+|P`|(rk`−1).

If P` is normal then, this is the correct rank of ker( `G̃ → G) (Prop. 1.30),

and therefore of ker( `G̃ab
→ G), say, from Lem. 3.9. That leaves rk` = 1 (cyclic

`-Sylow) as the only possibility that ν(G, `) = 1. Then, ν(G, `) = 1 if and only if:

(3.47) P` = Z/`t is normal; and G/O`′(G) ≤ Z/`t ×s(Z/`)∗.

In analogy to O`′(G), denote the maximal normal `-subgroup of G by O`(G).

That is, G/O`(G/O`′(G))
def
= G mod `′, mod ` results from: mod out G by a maximal

normal `′ part; then, mod out by the maximal normal ` part.

Definition 3.11. We say G is `-supersolvable if G mod `′, mod ` is abelian of

exponent dividing `−1.3

3G is supersolvable if a chain of subgroups

G = Gu > G1 > · · · > G1 > 1 = G0 has Gi normal in G
with [Gi+1 : Gi] prime, 0 ≤ i ≤ u−1 [Is94, p. 102].
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Example 3.12. Consider `G = (Z/`)2 ×sZ/3, with prime ` 6= 3 as in Ch. 5

Def. 3.1. Then, `G is `-supersingular if and only if 3|`−1 which is the exact condition

that (Z/`)2 is a direct sum of two distinct Z/` modules. 4

Remark 3.13 (Continue Prop. 3.10). Without assuming G is `-perfect, [GS78]

characterizes ν(G, `) = 1. Then, G is `-supersolvable with a cyclic `-Sylow. We used

that the `-Frattini extension captures the characteristic module, when it need not

contend with the Ext side of the Universal Coefficient Theorem, Def. 2.5.

Remark 3.14. Cyclic `-Sylow itself is far from giving dim(M0,1) = 1. For

example, A5 has a cyclic 5-Sylow, though, 5M0,1(A5) has dimension 6 (Ch. 6 §1.6

or [Fr95, Prop. 2.4]). Its Loewy display has one copy of the adjoint representation

of PSL2(Z/5) = A5 on top of another. Each An, n ≥ 5, has a cyclic `-Sylow (say,

` > n/2 a prime) with ν(G, `) > 1.

Remark 3.15 (Addendum to Dihedral Ex. Ch. 2 §3.2). We excluded, for the

moment, ` = 2 in considering `MG with G = D`k+1 . §3.3.3, however, includes it.

3.3. Including both G and C in the RIGP. Much of the RIGP treatment

in [FrJ86] is dedicated to showing how far elementary considerations about groups

can extend. Here we introduce just how close are two situations:

(3.48a) Elmentary group situations that do allow RIGP solutions; and

(3.48b) situations that face unsolved problems in classical arithmetic situations.

§3.3.1 includes some principles that have general use in dealing with Galois group

realizations. §3.3.2 compares and enhances observations made in [FrJ86]2 and in

[Se92]. Then, §3.3.3 puts those easy dihedral group regular realizations in a gen-

eralizing context, producing affine group regular realizations more advanced than

first year graduate algebra Galois realizations of dihedral groups. It concludes with

general classical unsolved problems that don’t seem RIGP related at all.

3.3.1. Using wreath products. We simplify the proof of [FrJ86, Prop. 16.4.4]2,

mostly due to [Ik], in Prop. 3.17.

Definition 3.16. Suppose H is the Galois group of an extension M1/N over

a field K. We say this realization extends to a cover ψ : G → H – not necessarily

a semidirect product – if we realize G as the group of an extension M2/N that

identifies M1 as the fixed field of ker(ψ).

We may qualify realizations and extensions with adjectives, as we choose. For

example, by saying the realizations are regular, or the extensions are split (or Frat-

tini) as we do in Prop. 3.17. §3.3.2 says considerable about the techniques in (3.50)

and the significance of their conclusions. Below assume K is an Hilbertian field.
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Proposition 3.17. Suppose there is a K regular realization of H, with H acting

on a finite abelian group A. Then the regular realization of H extends to a K regular

realization of A×sH.

Proof. The wreath product – Ch. 6 §1.2.1 – explains this with these changes

in notation for a right-hand action: H 7→ A, G 7→ H, and n 7→ |H| for the regular

representation. We deal with the subgroup A oH = An×sH of An×sSn with h ∈ H
acting on the letters {h1, . . . , hn} of Sn by multiplication on the right: hi 7→ hih.

With (ah1 . . . , ahn)
def
= aaa ∈ An denote elements of A oH as

(
h 0

(ah1 ...,ahn ) 1

)
.

Use the matrix multiplication of §1.2, as in Ch. 6 §1.2.1. For h′ ∈ H and

hj = hih
′, then the hj coordinate of aaa ∗ h′ is ahi .

Getting an A×sH quotient: Now we show A×sH is a quotient of A oH given by

(3.49)
(
h 0
aaa 1

) α−−→
( h 0∑

i(ahi )hi
def
=α(aaa) 1

)
,

with the lower left term – as A is abelian – written additively. From the matrix

multiplication, α is a homomorphism if for h, h′ ∈ H and aaa,aaa′ ∈ An:

(α(aaa))h′ + α(aaa′) = α((aaa) ∗ h′ + aaa′), or (α(aaa))h′ = α((aaa) ∗ h′.

In terms of its coordinates the check has the left side as
∑
i((ahi)hi)h

′. Summing

the right side over j gives exactly the same.

Use the principle that a quotient of a K regular realization is also a K regular

realization. Thus, we will conclude the whole proposition by applying α to a K

regular realization of A oH. For this there are two steps:

(3.50a) There is a regular realization of A over K [FrJ86, Prop. 16.3.5]2.

(3.50b) Combine regular realizations of H and A|H| to give one of A oH.

(3.50a) follows, by the elementary divisor theorem,4 from the case where A is a

cyclic prime power. §3.3.2 gives details on both parts of (3.50). �

3.3.2. Comments on (3.50). It must be a surprise that a K regular realization

of a cyclic group (below) seems to require so much extra attention. Rem. 3.20 on

fine moduli explains why.

The BCL and (3.50a): Suppose W is a variety over L with [L : K] = d. Denote

the Galois closure of L/K by L̂. The following formalism produces a variety called

the Weil trace (or restriction of scalars) of W from L to K. Choose a primitive

element α = α1 for L/K with α1, . . . , αd the complete list of conjugates of α1 over

K. Each conjugate αi gives a conjugate variety Wi, defined over K(αi).
5

4That a finitely generated module over a principal ideal domain R is a direct sum of cyclic
modules (each of form R/(r), r ∈ R).

5Replace L/K by any finite perfect extension to affect the same construction.
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Then, G = G(L̂/K) acts on W ? = W1 × · · ·Wd, permutating the coordinates

according to its natural permutation representation of degree d. For σ ∈ G, indicate

this action by T (σ), acting on the left.

Now regard σ, by its action on the coefficients of the equations for W ? as giving

a conjugate of W ?. Denote this by W ?,σ. Thus, for each σ ∈ G,

the sets T (σ−1)(W ?,σ) and W ? are identical.

Proposition 3.18. There is a variety RL/K(W ) over K for which extending

scalars by L gives W ?. In this correspondence W (L) ↔ RL/Q(W )(K): L points of

W correspond to the K points of the Weil restriction.6

Proof. [Se92, p. 21] alludes to Weil’s restriction of scalars [We61].7 Intu-

itively, points of the variety RL/Q(W ) consist of the collections {T (σ)(w ∈ V ∗)}σ∈G.

Assume with no loss that W is affine, and embedded in a copy of An, also defined

over L for this universal approach.

There is a linear map L = (L1, . . . ,Ld) : And → (An)d defined over L with

the following property. For any subvariety W = W1 ⊂ An defined L, there is a

subvariety RL/K(W ) ⊂ And defined over K such that

(3.51) restriction of L maps RL/K(W ) isomorphically to W1 × · · · ×Wd.

Here the Li s are the conjugates of L1; see the notation of Ex. 3.19, which reminds

of the classical case n = 1.

Thus, we can apply this to the L subvarieties inW . This produces aK subvariety

of RL/K(W ) corresponding to the product of the conjugates of W . So, ppp ∈ W (L)

produces RL/K(ppp) ∈ RL/K(W )(K). �

Now we discuss two proofs of the regular realization of Z/n. [FrJ86, Lem. 16.3.1]2

presents a regular realization of Z/n over Q in detail by constructing gn(w, z) ∈
Q[w, z] with Galois group over Q equal to Z/n, having a zero in Q((z1/n)). As ex-

pected, it uses the extension Q(e
2πi
n )/Q by adjoining z

1
n . Still, it is a complicated

construction to get this. Though its coefficients aren’t enlightening, we use the case

n = `e, ` a prime in (3.52).

[Se92, p. 36–37] has an equation free proof regularly realizing Z/n. Only prob-

lem is, this calls for a seriously educated reader on tori. [Se68, Chap. II] (or less

brief, [O61]) is helpful background. It starts off with the requisite tori definitions.

Instead of A1, use Gm, the multiplicative group of nonzero elements.

Define a dimension d torus, G, over a field K, to be an algebraic group in Ad

whose K̄ points is isomorphic to the d-fold product of the multiplicative group

6More generally: K morphisms from a K variety U to RL/Q(W ) correspond to L morphisms

from U ⊗ L to W .
7The pubication date in this bibliography is 1982; the [Se68] bibliography has the date 1961.
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(K̄)∗
def
= Gm(K̄). Indicate field image of the distinct embeddings σi : L∗ → K̄ by

L∗j , j = 1, . . . , d.

Forming GL/K
def
= RL/K(Gm) from Ex. 3.19 makes sense. The result is an alge-

braic group whose K points – Prop. 3.18 – identify with L∗, and whose extension

of scalars to L (resp. to K̄) identifies, as a group, with
∏d
j=1 L

∗
j (resp. the extension

to the d-fold product of K̄∗).

The character group of G is HomK̄(G⊗K̄,Gm(K̄)); its elements are only sensitive

to the field embeddings listed above. List them in this multiplicative notation by∏j
i=1 σ

nσ following Serre’s notation. For σ ∈ GK̄ , σ−1σiσ
−1, is also an embedding,

giving a permutation action of GK on these embeddings, and a Z basis for the

characters, stable under GK .

Example 3.19 (Weil restriction: n = 1). For n = 1, here is how L in (3.51)

works. Use y1, . . . , yd as domain variables, and the linear map L1(yyy) =
∑d
i=1 α

i
1yi.

Then, an L subvariety of A1 is just
∑d
i=1 α

i
1y
′
i; the y′i s are in K, and the Lj(yyy) s

are the conjugates
∑d
i=1 α

i
jyi, j = 1, . . . , d.

Finish by showing how to get RL/K(ppp) with ppp = ppp1 =
∑d
i=1 α

i
1t
′
i as above.

Conjugates of ppp1 over K are then ppp1, . . . , pppd by substituting: α1 7→ αj , j = 1, . . . , d.

Apply Cramer’s rule [Ar91, p. 31] to

L =

 1 α1 · · · αd−1
1

. . . . . . · · · . . .

1 αd · · · αd−1
d

 with |Det(L)| = |
∏
j<j′

(αj − α′j)| 6= 0.

That is, L has an inverse, L−1, with L−1(ppp1, . . . , pppd) = (y′1, . . . , y
′
d) ∈ Kd. 4

This is essentially a field crossing argument in [FrJ86, Lem. 13.8.1]2, whereby

independent variables {t1, . . . , tn} for a regular realization for each copy of A in

A|H| are entwined with a basis {c1, . . . , cn} for an extension L/K with group G in

the form of a system of linear equations S = {
∑n
i=1 c

σ
i ti}σ∈G(L/K).

Then, combineM/K(u) and L(S)/K(t1, . . . , tn) into the extensionM ·L(S)/K(u, t1, . . . , tn)

with its group G × G and take the fixed field of the diagonal action of G to RE-

TURNM p. 259 FrJ.

Consider the projective nonsingular completion, W , of {(w, z) | gn(w, z)}. Then

take the corresponding cover:

(w, z) 7→ z, giving ϕ : W → P1
z.

In the notation of the BCL Prop. 4.1, denote the branch cycle classes of ϕ in

Ggn = Z/n by C. Indicate each by the unique u ∈ Z/n in the class; still denote

it Cu and the union, {Cu | (u, p) = 1, u ∈ Z/pe} by C(p′). The BCL is precise

on what would be the minimal cardinality of the classes in C for a Nielsen class

Ni(Z/n,C) supporting a regular realization like ϕ.



3. MTS AND THE RIGP 137

(3.52a) C must contain C(p′): the minimal possible number of branch points of

ϕ is pe−1(p−1).

(3.52b) We can’t expect a regular realization in Ni(Z/n,C(p′)), which hasn’t got

fine moduli, for Z/n has a center. Yet, the explicit gn is in this class.

Comments on (3.52a):

Remark 3.20 (Fine moduli failure).

3.3.3. Two sequence paradigm. While this goes beyond generalizing our run-

ning dihedral group example, it has a number of elements in common with that,

that eventually get us back to classical spaces. Cyclic groups and dihedral groups

require little understanding of group theory.8 Yet, they are irresistible to many who

have considered the RIGP template – with an eye to techniques – in a personal

conception of what the land of groups is about.

Starting with any centerless finite group G0 and prime ` for which G0 is `-

perfect, there is a Z`[G0] module LG,` of dimension9 ≥ 1 giving rise to two exten-

sions:

(G, `)-tower sequences: LG,` → `G̃s → G and LG,` → `G̃f → G.10

These sequences have these properties (explained further below).

(3.53a) Split: `G̃s is split, equal to LG,` ×sG0. If G0 is regularly realized over K,

then so is u` G̃s
def
= LG,`/`

uLG,` ×sG0, u ≥ 1.11

(3.53b) Frattini: u
` G̃f

def
= `G̃f/`

uLG,` → G0 is Frattini.12 Even for G0 = A5,

` = 2, 3 or 5, u ≥ 1, there have been no Q realizations of u`Gf .

3.4. Two RIGP statements. With The RIGP realization result of (3.53a)

– with Au
def
= LG,`/`

uLG,` applying to the semi-direct product u
` G̃s = Au ×sG0 –

is a corollary of the following with H = G0 and A = Au.

An explicit (resp. abstract) proof of these pieces is in [FrJ86, Prop. 16.3.5]2

(resp. [Se92, §4.2]). For (3.50a) it suffices to consider the case A = Z/`u, and

though it is overkill, the Branch Cycle Lemma (BCL; [Fr77, Thm. 5] and, among

other places, a key ingredient in [FrV91, Main Thm]) says – for ` odd – the minimal

number of possible branch points for such a realizing cover is `u−1(`−1). Conclude:

Lemma 3.21. Consider any sequence of regular realizations of {Au}∞u=1 over Q,

with corresponding count of the branch points as {ru}∞u=1. Then, ru 7→ ∞.

8As we will see the same cannot be said for, say, alternating groups, though they give the
first simple – nonabelian – groups in a graduate algebra course.

9Necessarily ≥ 2 unless G0 is the `-supersolvable generalization of dihedral.
10There may be more than one LG,` but among them is a maximal such with a characteristic

dimension dependent on (G, `).
11There is an explicit degree bound for such a K, dependent only on (G, `).
12H → G0, a group cover, is Frattini if H1 ≤ H maps surjectively to G0, then H1 = H.
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Yet, the conclusion of Prop. 3.22 – referring to Hurwitz spaces H(G,C)† of

sphere covers corresponding to a Nielsen class Ni(G,C)† as if a reader knows about

them – is still a possibility.

♦: This conference would include many, some giving expositions, knowledgable

on the arithmetic of Hurwitz spaces and their literature.

With K a number field, suppose the sequence {u` G̃f}∞u=1 has a sequence of

respective K regular realizations Wf,G0

def
= {ϕu,f : Wu,f → P1

z}∞u=1. Denote the

number of branch points of ϕu,f by ru,f .

Proposition 3.22. If there is any uniform bound Bf,G0
on all of the ru,f s,

then, there exist r conjugacy classes Cf of G0,

r
def
= rCf ≤ Bf,G0

, each class of elements of order prime to ` (`′).

From Schur-Zassenhaus, these Cf lift canonically to classes – still denoted Cf

– in each u
` G̃f . With † = inner, this gives a projective sequence of Hurwitz spaces

HGf ,Cf ,`
def
= {Hin

f,u
def
= H(u` G̃f ,C)in}∞u=0.

Diophantine addition: Hin
f,u has an absolutely irreducible K component, H′u,Cf

with a K point pppf,u from a K regular realization of u` G̃f , u ≥ 1.

With no loss, you may assume the sequence H′Cf
def
= {H′u,Cf }

∞
u=1 is a projective

sequence. In a natural way, induced from u+1
` G̃f → u

` G̃f , points of H′u+1,Cf
lie over

points of H′u,Cf .

Given r = rCf -tuple gggu+1 ∈ (u+1
` G̃f )r in Cf lying over gggu ∈ Ni(u+1

` G̃f ,Cf ).

From the Frattini cover property they generate u+1
` G̃f . So,

(3.54) gggu+1 ∈ Ni(u+1
` G̃f ,Cf ) precisely when product-one (??) holds.

In (3.57), denote the rank of P` by ν(`), ψ̃`,ab : P̃`,ab = (Z`)ν(`) → P` the

universal free-abelian `-extension of P` (as in Cor. 2.4), and G/P` by H. We will

use comments on the ` contribution to RIGP realization of `G̃ab
from the Prop. 3.23

proof.

Corollary 3.23. The G action on P` extends to P̃`, inducing an H action on

P̃`,ab extending that on P`.

If G/P` has a regular realization over an Hilbertian field K, then so does each

of the quotient groups P̃`/`
k+1 ker(ψ̃`,ab)×sH, k ≥ 0.

Proof. From Prop. 1.30, the H action on P` extends to `G̃. That action

preserves [P`, P`], giving the 1st paragraph. It also preserves `k+1ψ̃`,ab giving an H

action on the quotient by that group. �

If, as above, P` is not normal in G, say when G is simple, then for no k > 0 has

any k
`G been regularly realized (A5, and ` = 2, worthy on its own).
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The R(egular)I(nverse)G(alois)P(roblem)

and M(odular) T(ower)s RETURNM

(3.55a) Frattini cover:ψ :H →G; if H∗≤H andψ(H∗)=G =⇒H∗ =H.

`-perfect: `||G|, but G has no Z/` quotient.

(3.55b) Problem: Most groups are not like simple or solvable.

(3.55c) Example: Take G, `-perfect and centerless: ∃ν(G, `) > 0 (> 1, outside

supersolvable) and an extension

1→ (Z`)ν(G,`) → `G̃ab
`ψ̃ab−−−−→G→ 1 : 8

`G̃ab universal for `-Frattini covers of G with abelian kernel.

(3.55d) ¡4-¿ Subex.: Even for G = A5, and where v(G, 2) = 5, for no k> 0

has 2Ã5,ab/2
k ker(`ψ̃ab

) = k
2A5 been realized overQ.9

Which is more important/serious/. . . ?:

Cases similar to (G, `) = (D`, ` = `) or to (A5, ` = 2).

MT definition

(3.56a) Assume r conjugacy classes, C of G; elements of order `′.

Schur-Zassenhaus lifts these classes uniquely to `G̃ab
.

(3.56b) Makes sense of `H(G,C)in,rd def
= {H(k`G,C)in,rd}∞k=0.

MT: Projective sequence of components on `H(G,C)in,rd.9

(3.56c) `H(D`,C24)in,rd = {X1(`k+1)}∞k=0 for ` odd.

(3.56d) Example: 2Ã4 is the pullback of A4 ≤ A5 to 2Ã5.

(Z2)5: As A4(but not A5) module has (Z2)2 as a quotient.

H(A5,C34)in,rd has one genus 0 component.10

Remark 3.24 (Conj. 3.1). Indeed, we make the conjecture with k
`G → G

replacing k
`Gab

→ G. Our point in making it in the latter case was to show an edge

closeto examples of regular realizations that update common knowledge about the

RIGP. Further, we can treat the conjecture as defining ∗C regular realizations

of G over a field K: it corresponds to a K point on a Hurwitz space defined by

C with support in ∗C, and it is absolutey necessary that such a point lies of on

Hurwitz space component defined over K, with the BCL merely giving the minimal

definition field of the whole Hurwitz space.

(3.57) Assume G has an `-Sylow, P`, that is abelian and normal.
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4. Moduli interpretation of the (G, `)-tower sequences

We start with production the module LG,`. Then, we go to simple RIGP ques-

tions that produce the moduli spaces whose properties generalize those usually

associated with moduli of abelian varieties.

4.1. Source of LG,`. The following statements start from [FrJ86, §22.4]2

with supplements in [BFr02] and related. Especially [?] which includes a 4-Parted

series called Frattini ` pieces.

Given (G, `) as above, there is a universal `-Frattini cover `ψ : `G̃ → G: any

Frattini cover H → G with `-group kernel is a quotient from `ψ.

A fiber product construction produces a universal (profinite) Frattini cover ψ̃ :

G̃ → G from which come these `-Frattini covers and the abelianizations of their

kernels as a quotient. This shows ker(`ψ) is a pro-` pro-free group of rank bounded

computable – from the rank of G and the index of an `-Sylow. By modding out

by the commutator of the kernel, ker(`ψ) = ker`, there is a universal abelianized

version `ψab
: `G̃/(ker`, ker`)/→ G.

That gives the Frattini sequence (3.53b). It also identifies ker(`ψab
) with the

maximal possible LG,` that can appear in this sequence. To understand the abelian-

ized Universal `-Frattini, consider

`MG = ker(`ψ̃ab
)/` ker(`ψ̃ab

).

4.2. A taste of the Frattini ` pieces. For example, Part 1 of the Frattini

`-pieces is [?, Ch. 1, Prop. 1.14] includes these statements.

(3.58a) Fiber products of `ψ̃ab
, `||G|, give ψ̃

ab
: G̃/[ker(ψ̃), ker(ψ̃)]→ G.

(3.58b) Conjugating by lifts of elements in G, makes ker(`ψ̃ab
) a free Z`[G] module

extending the Z/`[G] module structure on `MG.

(3.58c)
∑
`||G| dimZ/`(`MG) ≤ 1 + |G|(rank(G)−1).

Other possibleG lattices that serve as LG,` are quotients of ker(`ψab
). Ordinarily

modular representations have somewhat scary aspects called wild. Yet, Parts 1 to

4 of the Frattini ` pieces gives illuminating examples of the moduli space towers

that appear below. For accessibility, results compare them with the special case of

towers of modular curves.

4.2.1. Explicit Nielsen classes.

(3.59a) Thompson and Völklein produced large series of Chevalley groups, G,

rank > 1, as Q regular realizations (3 total such groups had been achieved

previously) by finding C so the Hurwitz space, H(G,C), corresponding to

(G,C) has Q points.
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(3.59b) Appying the Branch cycle Lemma, the Fried-Serre Lift Invariant, the

Conway-Fried-Parker-Völklein component bound, for each G, gave infin-

itely many explicit C withH(G,C) nonempty and having a Q component.

(3.59c) Fried produced infinitely many explicit C (called Harbater-Mumford) for

which the canonical projective system of Hurwitz spaces {H(Gu,C)}∞u=0

contains a subsystem, {H′u}, of nonempty (absolutely irreducible) compo-

nents over Q.

Found explicit connected Hurwitz spaces H(G,C) with:

• H(G,C) transcendental parametrizing parameters;

• C as a collection rational over Q.

• Guarantees RIGP for those groups over Q.

For any subset, S, of a group G, refer to it as `′ if all elements in

S have order prime to `. The Hurwitz space objects as explicit encoders

of all regular realizations raise myriad questions. The following projects

responded to that.

5. PAC fields; A presentation of GQ

This section continues §3 through consequences to the RIGP through using

the field analogy to finite fields called PAC fields (Def. 5.1). It features a place of

success, whereby non-classical subfields of Q̄ have benefitted the RIGP, Thm. 5.4.

§5.2 joins both versions of the BCL – for inner and absolute equivalence –

to investigate GQ by a paradigm new in [FrV92]. §5.2 does this by guaranteeing

there exist Q Hurwitz space components indexed by (G,C) for infinitely many

C, a particular case of the theme of §3.3. §5.3 completes Thm.. 5.4 by combining

techniques in this PAC context that allow us to deal with all groups.

Definition 5.1 (PAC). Refer to a field L ⊂ Q̄ as

P(seudo)A(lgebraically)C(losed) if V (L) 6= ∅,

for each absolutely irreducible (quasi-projective) variety V over L.

Using Weil’s restriction of scalers, and the Bertini-Noether theorem, the test

for PAC reduces to checking on just those V that are absolutely irreducible curves

over Q: [FrJ86, Thm. 10.4]1 or [FrJ86, Thm. 11.2.3]2. Note also, that allowing

V to be quasi–projective means there are L points lying off any particular proper

algebraic subset of V .

Remark 5.2. If L [?, Thm. 2] is not PAC, then there is an absolutely irre-

ducible curve in P1 over L with no L points. That is, the test of plane projective

curves fo L points suffices to separate PAC fields from non-PAC fields.
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5.1. Absolute Galois groups of PAC, Hilbertian fields.

Definition 5.3. Denote the profree group on a countable set of generators by

Fω. We call a field L ω-free if GL ≡ Fω. So, GL has every finite group as a quotient

: it satisfies the IGP for every finite group G. Such a field is also Hilbertian (see

§6.1.1 for the definition) as we discuss below. Similarly, denote the group that is

profree on a countable set of involutions to be F2∞ , and refer to any field having it

as absolute Galois group as Inv-free.

Theorem 5.4 (GQ structure). A PAC field L is Hilbertian if and only if L

is ω-free. For K a number field, then K ≤ L, with L Galois over K and PAC.

Further, we may choose L so that GK has a presentation

(3.60) 1→ Fω = GL → GK → Π∞n=2Sn
def
= S∞ → 1

The left side of (3.60) is a corollary of the first sentence. The heart of

“ PAC+ Hilbertian =⇒ ω-free ”

comes from choosing C (as in answers to (2.9b)) for convenience and tying together

the abs and in spaces (as in (2.9c)), to build large IGP realizations over Hilbertian

PAC fields (Prop. 5.9). The right side of (3.60), was created with this thought:

Our technique for constructing it was based on a simple principle about presenting

curves over Q as covers, and from that we wanted a (relatively small) group, S∞,

recognizable by most mathematicians. Rems. 6.8 and 6.9 give the subtleties of that

choice.

We say a PAC field K is Frobenius if GK = G has the following property.

Definition 5.5 (Embedding Property). For any group covers ψ : G → A and

ψ′ : B → A, with B a quotient of G, there exists a cover γ : G → B for which

ψ′ ◦ γ = ψ [FrJ86, Defs. 24.1.2 and 24.1.3]2.

Frobenius fields include the case of e-free fields where 1 ≤ e ≤ ∞, with ∞-free

the same as ω-free, our case here. The 1-free fields arose as the exact PAC analog of

finite fields (Rem. 6.7). Lem. 5.6, implying the Hilbertian property for PAC fields

that are ω-free, comes from a trick

– the F(ield)C(rossing)A(rgument) –

that goes back to Chebotarev’s proof of his renown Density Theorem. §6.1.1 reminds

of the history of that Chebotarev-HIT connection from [Fr74, §2–3].

In extending the ideas of [FrS76], aimed at solving an Ax-Kochen problem

about finite fields, the PAC condition replaces the so-called Lang-Weil argument:

an absolutely irreducible variety over a suitably large finite field Fq has a Fq point.

The length and complication of the proof in [FrJ86, §24.1]2 (or [FrJ86, §23.1]1)
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comes from passing back and forth between covers and fields, instead of, say, the

treatment in [FrS76] which used covers, their fibers and fiber products directly.

The material of the FCA in this application starts with two finite extensions

of our base field L, E1 = L̂/L which is Galois and E2 = F/L(z), which is regular,

with Galois closure E∗2 = F̂ /L(z). They have these properties.

(3.61a) E1 and E∗2 both have group identified with G; and

(3.61b) E3 = M̂/F , with group H, is the extension of constants of F̂ /L(z) through

which E1 factors.

Now form the covers P1
z,L̂

def
= P1

z × Spec(L̂) → P1
z and ϕ̂ : X̂ → P1

z with X̂ the

projective, normalization in the function field F̂ . Then the fiber product

(3.62) ϕ̂L̂ = P1
L̂
×P1

z
X̂ → P1

z has group identified with G×H G.13

Lemma 5.6. Assume L is PAC and ω-free. Then, L is Hilbertian.

Comments. Use the notation of (3.62). To show that L is Hilbertian, we use

the Galois version of the Hilbertian property (HIT; §??) and show it applies to

ϕ̂. [FrJ86, p. 230]2 has a short summary of the various results (Weissauer’s and

the Diamond Theorem; that are proved after that) that give infinite extensions of

Q that are Hilbertian. The basic one we use is Weissauer’s, restated in §?? with

relevant examples to our discussion.

Construct the field extension L̂ immediately by using that L is ω-free. Rem. 6.7

explains why, even though GL is automatically projective, that is insufficient for

such a conclusion.

Now take the diagonal ∆(G) on G ×H G. Quotient out by ∆(G) acting on

P1
L̂
×P1

z
X̂ to get ϕY : Y → P1

z an absolutely irreducible cover over L. Running

over the infinitely yyy ∈ Y given by the PAC property, allows us to assure ϕY (yyy)

avoids any branch points of ϕ̂. It is now automatic from the construction that the

decomposition group of ϕY (yyy) in ϕ̂ is G. That establishes Hilbertianity. �

Prop. 5.9 gives the other direction that proves (3.60), based on the relation

between inner and absolute spaces. It also opens the topic, for a given finite group

G, of which classes, C, suit a specific application. We continue here with lessons on

what we have learned from PAC fields.

Conj. 5.7 replaces the hypothesis that L is PAC with the projective property

that PAC implies. There are projective fields that aren’t PAC, but are Hilbertian.

Example: The cyclotomic closure, Kcyc, with a K a number field for which there

are elliptic curves over Kcyc with rational points. This simultaneously generalizes

a Conjecture of Shafarevich, and Thm. 5.4.

13The conditions in (3.61) that the fields are extensions of L(z) and that E1 and E2 have
the same groups, rather than the group of E1 being a subgroup of that of E2, are expedients to

move the argument along more quickly.
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Conjecture 5.7. [FrV92, ] Any Hilbertian field L ⊂ Q̄ is ω-free if and only

if GL is projective.

This raises three aspects of PAC fields which we take up in the remarks.

(3.63a) Are they Serious?: Rem. 6.7 clarifies why they can’t be dismissed.

(3.63b) Are they useful?: For PAC fields such properties as Hilbertian and RG-

Hilbertian are group-theoretic (Rem. 6.10).

(3.63c) Are they apparent?: Do PAC fields appear in serious applications? What

about projective fields (Rem. 6.8 and Rem. 6.9)?

5.2. Completion of presenting GQ. We now complete the hard half of

Thm. 5.4. To do so required coming to grips with aspects of the effect, for a fixed

G, of different choices of C. The essence of it is to construct covers ϕ : X → P1
z,

over any PAC Hilbertian subfield of C, that achieve (G,G∗) realizations (Def. 1.6)

using the diagram of Thm. 1.7. That will also be a model for what to expect in

achieving such results over number fields, where the problem arises naturally in

specific cases (§6.1.3). We must do this in the generality required to consider the

problem for all pairs (G,G∗).

As in §1.1, assume ∗C is a rational union of conjugacy classes. Prop. 5.9 lists

sufficient conditions for (G, ∗C) that guarantee Ni(G,C)in has Q components for

infinitely many C ∈ R∗C (rational unions of classes containing each class of, and

supported in, ∗C). It further shows that every finite group is a quotient of some G

that occurs among these pairs, for some extending classes ∗C.

These appeared in [FrV91] to give sufficient absolutely irreducible Q-components

from the desired list of Prob. 1.1 so as to finish the proposition. By 1988, Ex. 2.9

guided me in simplifying what was going on with braid orbits, so long as high

multiplicity condition (3.19) holds.

Definition 5.8. An extreme opposite to all classes in ∗C being liftable (Def. 1.4)

to a central Frattini cover ψ : H → G, is that the generalized lift invariant is trivial.

It is equivalent that single commutators from ∗C generate ker(ψ) (as in Ex. 2.11).

We say (ker(ψ), ∗C) has trivial lift invariant.

If (ker(ψ), ∗C) has trivial lift invariant, then for any C ∈ R∗C, the lift invariant

of any ggg ∈ Ni(G,C) is trivial. When ∗C consists of all nontrivial classes in G,

[FrV91] refers to Def. 5.8 as ker(ψ) is generated by commutators. If G has no center,

then the group of automorphisms, Aut(G), extends the action of G as conjugations

on G.

Proposition 5.9. By replacing G by a finite cover of G, with no loss we may

assume the following.
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(3.64a) For a representation cover, ψG : R → G, single commutators generate

ker(ψ).

(3.64b) In addition to (3.64a), G is centerless and, if ∗C contains all nontrivial

classes of G, then (ker(ψG), ∗C) has trivial lift invariant.

Consider G∗ the cover of G for which G∗/G consists of all outer automorphisms of

G. Assume RETURN , if (3.19) holds, for C ∈ R∗C, from the diagram Hin → Habs

there is a Q component (as a moduli space) of Hin from which we can achieve

(G,G∗) over every PAC field, L ≤ Q̄.

(3.65a) with L∗/L Galois with group G∗/G we may achieve the realization of

(3.64b), from a regular cover ϕ : X → P1
z whose constant field extension

is L∗/L.

In particular, GL is profree on a countable number of generators.

The next three subsections prove and comment on the pieces of Prop. 5.9.

5.3. Producing the cover of (3.64). We produce a centerless cover of G

whose representation cover has trivial lift invariant. Choose ψG : RG → G, a

representation cover of G (Def. 1.10). Then, consider a representation cover ψG.2 :

RG,2 → RG. As a composition of Frattini covers,

ψ
def
= ψG ◦ ψG,2 : RG,2 → G is a Frattini cover,

but it may not be central.

Now, let T
def
= ψ−1

G,2(ker(ψG)). Then, Z
def
= [RG,2, T ] ≤ ker(ψG,2) is a subgroup

generated by single commutators. Thus, ψ/Z : RG,2/Z → G, with ker(ψ/Z) = T/Z,

is a central Frattini cover with commutator kernel (Def. 1.10). As ψG is a maximal

central Frattini cover of G with commutator kernel, and ψ/Z factors through it,

conclude that RG,2/Z = RG.

(3.66) So, Z = ker(ψG,2): Single commutators generate ker(ψG,2).

Suppose we replace G by RG. Then, we have a cover of G with a representation

cover whose kernel is generated by single commutators. Therefore, no matter what

is ∗C, the lift invariant for any Nielsen class will be trivial. That still leaves a

problem.

Even if G has no center, RG does if it is a nontrivial cover of G. [FrV91, Lem. 2]

produces a cover of G that adds property (3.64b) to (3.64a). RETURN

Remark 5.10 (Explicitness in Prop. 5.9). §3.64 produces the group satisfying

(3.64), replacing the original group, in two steps. First: By forming a representation

cover RG → G. Second: By forming a wreath product of RG with an explicit group.

Thus, the resulting group is explicit if there is an explicit construction of RG. As

with all things Frattini, consider the construction one `||G| at a time. The module
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MG,` appears as the `-part of H2(G,Z), an abelian group killed by multiplying by

|G|, [Br82, III. Cor. 10.2] from the restriction-corestriction sequence.

RETURN That bounds the power of ` dividing MG. In particular, that bounds

the `-Frattini level in which MG, with trivial G action can appear, as a split sum-

mand of kernel of → G. Therefore, the explicitness results from the explicit con-

struction of the 1st `-Frattini cover level, as in Prop. 2.18.

6. The meaning of “Field Arithmetic”

“Field Arithmetic,” the title of [FrJ86]1 comes from these ideas.

(3.67a) Measure the dependence between diophantine properties by the nature of

the fields for which they simultaneously hold.

(3.67b) Expand on using, for a projective algebraic set V over Q, the nature of

those residue classes Z/` for which V (Z/`) 6= ∅.

This section is mostly expositional, tying together historical subjects to our

topics. The absolute Galois group of Q, GQ, and the collection, B = {Br}∞r=3, of

braid groups are the heart of many of the great disciplines of mathematics.

The former starts with forms of the IGP, giving explicit descriptions of various

quotients of Q, especially the maximal abelian (commutator) and then attempts at

the maximal nilpotent quotient of Q. Here are two milestones:

(3.68a) Ihara’s description of the 2nd commutator quotient of GQ; and

(3.68b) Shafarevich’s proof that all nilpotent groups are quotients of GQ.

The study of B drives descriptions of various spaces through fundamental groups.

Also, we relate it and GQ, by producing spaces whose points and definition fields

over specific fields reflect on the RIGP and the OIT. Concentrating on properties

of particular Hurwitz spaces, often with classical connections, is our focus.

General too is the connection of the RIGP and OIT to a sometimes dismissed

element in this discussion: H(ilbert’s)I(rreducibility)T(heorem). Hilbert introduced

it to connect the RIGP and the IGP. It became an adjective Hilbertian, a property

of fields. §6 describes how it illustrated the goals of [FrJ86] using PAC fields.

Somewhat confusing – in the classical literature – is with what weight should

we emphasize fields vs algebraic sets. To whit: What algebraic sets – say, complete

intersections of various degrees, or abelian varieties – were assured of having rational

points over which fields. §6.2 reminds of this. In particular that special result called

Chevalley’s Theorem §6.4 – that culminated in a PAC avatar conjectured by Ax

and proved by Kollár.

Then, there are the various results and conjectures of Ax, Jarden, Shafarevich

§6.2.2 that motivated so much of what lay behind [FrJ86] and the result ( with
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its natural conjecture) of the Fried-Voelklein Conj. 5.7 on Hilbertian fields with

projective absolute Galois group.

Extending those concerns to Hurwitz spaces, where describing properties of

components of Hurwitz spaces defined by various groups and their conjugacy classes

gets us to the most modern considerations §6.2.3. The properties in question are

birational. Then, extracting such properties from B opens a new subject, birational

algebraic geometry , for which homotopy theory is a requisite tool.

Finally, we can’t avoid connecting to two of Grothendieck’s famous topics,

dessins d’enfant and his Teichmüller group §6.3, especially because of his comment

relating correspondences on curves to the OIT.

6.1. IGP and RIGP comparison. §6.1.1 reviews the nature of the hilber-

tian property, comparing the IGP, the RIGP and hilbertianity and its surprising

behavior on the lattice of subfields of Q̄ in the spirit of Field Arithmetic.

There is an ongoing project that delves into the role of HIT the relation between

the RIGP and the IGP. §6.1.2 does an exposition on it comparing over a field F , for

a given group G, realizations of G as a Galois extension of F , FG,IGP and FG,RIGP:

The specializations of RIGP realizations of G using HIT. At this stage, with both

problems still so unsolved, the comparison is often qualitative, comparing densities

of elements of FG,RIGP resulting from specific RIGP realizations of G with those

of FG,IGP.

Finally, §6.1.3 notes the ubiquitous appearance in absolute Hurwitz families of

covers X → P1
z that are absolutely irreducible, but whose Galois closures in the

related inner Hurwitz spaces may not be regular. Prevalence of such families are

precisely what motivated much of this book, as they include and generalize so many

classical diophantine problems, starting with problems from modular curves.

6.1.1. Hilbertian fields and universal Hilbert subsets. The simplest statement

of the Hilbertian property for a field K is this: for f(x, y) ∈ K[x, y], irreducible

(over K), then f(x0, y) remains irreducible as a polynomial in one variable over

K for infinitely many x0 ∈ K. This statement leaves open many ways we might

indicate some properties of the Hilbertian set

Hf (K) = {x0 ∈ K | f(x0, y) is irreducible over K.

For example, we might consider finding an infinite setH ⊂ Q, a universal Hilbert

subset, for which up to finite sets H ⊂ Hf (K) for every irreducible f ∈ Q[x, y].

[FrJ86, p. 289]2 which lists results on this from [Fr85]. Specifically, it notes, to our

knowledge, that the first explicit version of such is H = {[e
√

log(log(m)]+m!2m
2}∞m−1

in [Spr81]. More arithmetically enlightening is the example of [DZ98, Thm. 1],

{2n +n}, a special case where you can replace 2 by b (|b| > 2) and n by p(n) where

p ∈ Z[z] is any nonconstant polynomial.
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Still, there is the question of effectiveness, as all these results rely on Siegel’s

Theorem that a function f(w) on an affine curve in (z, w) will have at most finitely

many Z[1/a] values at rational points of the curve, unless f(w) has at most two

poles, and a special form at that. Then, that taking on the special values listed

in these papers is possible only finitely many times. Siegel’s result though is (still)

ineffective. Another approach is that of [D96, Cor. 3.7]. This effectively bounds

the elements appearing in a given Hf , indeed, it allows any finite collection of

polyomials in two variables. [D96, Express. (23)] makes no assumption on absolute

irreducibility. It givies an explicit bounding expression depending on bounds d on

the total degrees and heights h of the polynomials. This is explicit, and a polynomial

in h. Whether such a bound is possible that is polynomial in both d and h appears

not yet to be known.

The historical roots of the relation between the Chebotarev density theorem,

especially its non-reregular analog [Fr74, §2] and its relation to [FrS76], where

it was assiduously applied, and a proof of the HIT as given in [Fr74, §3]. The

more general Field Crossing argument as in [FrV92, Lem. 1] appears entirely field

theoretically in [FrJ86, §23.1]1.

Finally, there is Weissauer’s result for which one immediate conclusion is that

the Hilbertianity property for fields can jump around a lot.

Theorem 6.1 (Weissauer). We assume K ⊂ Q̄. If K is Hilbertian, and L/K is

Galois, then any extension K∗/L is Hilbertian if the inequalities ∞ > [K∗ : L] > 1

hold [FrJ86, Thm. 13.9.1]2.

Independence of RIGP, IGP and Hilbertianity: Now that we know there exist

many PAC fields that lie deep in the algebraic numbers, we use them to consider

what holds for all PAC fields. Rem. 6.3 gives one hint at the independence of the

RIGP and the IGP. The RIGP holds for Q̄ from RET, but clearly the IGP does

not. The following property is relevant to connecting the RIGP and hilbertianity.

Definition 6.2. If, for a field L, each regular Galois cover ϕ̂ : Ŷ → P1
z over L

has infinitely many irreducible fibers Ŷz0 , z0 ∈ P1
z, we say L is RG-Hilbertian.

Remark 6.3. The IGP can hold for a PAC field that is not Hilbertian, giving

an independence statement of the relation between the two properties HIT and

IGP. [FrV92, p. 480] constructs such as an overfield of a PAC, Hilbertian, field P

defined as the fixed field of a subgroup H̃ ≤ Fω that happens to be the Universal

Frattini cover of the following small group:
∏∞
i=2Gi where each finite group appears

in {Gi}∞i=2 exactly once.

6.1.2. Relating FG,IGP and FG,RIGP.
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6.1.3. Diophantine problems calling for (G,G∗) realizations.

6.2. Finite fields, R and p-adic fields. From the viewpoint of this book,

[FrJ86, Chap. 19]1 (resp. [FrJ86, Chap. 21]2) barely scratches the surface of the

historical motivation around the problems of arithmetic geometry. Each edition of

the book emphasizes model theory of fields more than the previous. Yet, the p. 268

(resp. p. 452) statement

Each of these concrete problems focuses our attention on rich

historically motivated concepts that could be overlooked in an

abstract model theoretic viewpoint.

Overlooked, because model theory tries to encompass any possible problem, while

arithmetic geometry aims to develop new tools to handle bottlenecks previously

blocking progress in understanding fields which provide solutions to various struc-

tured sets of algebraic equations. This subsection emphasizes the history, starting

with Chevalley’s Theorem §6.4. It certainly motivated the formulation of results

about PAC fields, instigated by James Ax.

6.2.1. Chevalley’s and Kollár’s Theorems. Chevalley’s Theorem drove diophan-

tine considerations in many directions primarily by distinguishing for fields – among

a collection V of varieties – between a member V ∈ V having an absolutely irre-

ducible component defined over the field and having a rational point in the field.

There was nothing diophantine in the work of Abel, Galois or Riemann. Their

work recognizes the mystery in relating all zeros of an irreducible polynomial over

a field, and the role of the Galois group of the polynomial to it. Yet, earlier than

these, was the work of Gauss (quadratic reciprocity specifically), Lagrange (Pell’s

equation and the values of forms), the great body of work on the nature of primes

(say, Dirichlet’s proof of primes in arithmetic progressions and L-functions attached

to number field extensions), the attempt to solve Fermat’s last theorem by so many

(Dedekind’s codifying results on algebraic number fields).

Still, if you had to take one theorem that had inordinate influence to its proof

and sweep, it had to beThm. 6.4.14 Use these notations for fields: a finite field of

order q is Fq; a completion of a number field K at a prime ppp is Kppp; and the formal

power series in a variable t over Fq is Fq[[t]].

Theorem 6.4 (Chevalley). A form F of degree d in Pd over a finite field Fq has

a point in Fq. So, that form, over Fq contains an absolutely irreducible Fq variety.

E. Artin, its formulator, also apparently suggested the next step up:

(3.69) A degree d form in Pd
2

over a p-adic field Kp should have a point in Kp.

14[BvSh66, p. 5] reproduces the proof after an introduction to polynomials modulo p. It does
the proof over Z/p, but says it works over any finite field. The main replacement is ap−1 7→ aq−1

in Euler’s Theorem on the multiplicative group of nonzero elements in Fq .
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Lang [La52] suggested this might be true by proving it held for Fq[[t]]. Ax and

Kochen showed that any nontrivial ultaproduct of {Qp | primes p} is isomorphic

to the same ultraproduct of the fields with Fp[[t]] replacing Qp. So, any arithmetic

geometry statement quantifying algebraic sets that could be interpreted in this set

for either ultraproduct would be true for almost all p in one if and only if in the

other. Thus this Artin Conjecture, followed in this form from Lang’s Theorem.

These are statements (not pure existential) in the first order predicate theory

of finite fields. That means – given d – there are collections of variables quantified

by ∀ (for all) and by ∃ (there exists). Here: ∀ set of coefficients of a hypersurface

of degree d, ∃ values of the variables in F (placeholder for a finite field).

Question Qd: is this statement true for all, or all but infinitely many, or infinitely

many q, with Fq = F? It is those problems that drove Ax, and for which he and

Simon Kochen won their Cole Prize. 15

The major shock, in a way, was that unlike Chevalley’s Theorem, the Artin

Conjecture was true only for almost all p: For each fixed d there were usually a host

(but finite) of primes p for which there were hypersurfaces of degree d in Pd2 that

had no Qp points.16

Ax knew the algebraic numbers for certain ultraproducts aren’t PAC, for es-

sentially the same reason that p-adic fields aren’t. Yet, he still conjectured that

Chevalley’s Theorem held for any perfect PAC field. In particular for any case

where the algebraic numbers in an ultraproduct were PAC. Indeed, the case when

a PACfield had abelian absolute Galois group followed from Chevalley’s Theorem.

Such a field could not be Galois over Q, and perhaps that constrained his thinking

about PACfield. He even conjectured that being both PAC and Galois over Q was

not possible, except for Q̄. That was shown wrong in [FrJ78]. That negative comes

out in a positive way in Ch. 4.

Conjecture 6.5 (Ax). A hypersurface of degree d in Pd over a perfect PAC

field K, contains an absolutely irreducible K subspace.

[Ko07b] starts out immediately by using an intrinsic, rather than the hyper-

surface equation (extrinsic), form of such a hypersurface V . It is a Fano variety: Its

canonical class κV has the property that its negative is ample.

Remark 6.6 (Hypersurface intersections). Following [DeJL83] the actual re-

sult in [Ko07b, Thm. 2] extends to the intersections of hypersurfaces in Pd whose

degrees sum to at most d.

15[BvSh66, p. 58–59] includes many comments on this, without reference to Ax-Kochen,

including its truth for d = 2 and 3, and with d2 replaced by an explicit, but large, N(d) its truth
without reservation in [Bra45].

16Nor is there an obvious rational for the exceptional primes for a given value of d, [Sch84].
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6.2.2. The Conjectures: Ax, Shafarevich, Fried-Völklein. Prop. 5.9 plays on

finding Hurwitz spaces H(G,C)∗ with a single absolutely irreducible component.

Given G, but allowing C to vary, we know one component is very common, if all

classes in C appear suitably often. That hypothesis, however, doesn’t hold if – for

good reason – we restrict to the case r = 4, by which we can compare with classical

situations, especially with modular curves, as we do in Ch. 5.

Remark 6.7 (HIT vs Chebotarev). Ax found the algebraic closure of Q isn’t

the only PAC subfield, L, of Q̄. Almost (but not all) fields of algebraic numbers of

a non-trivial ultraproduct of finite fields are PAC. Based on Chevalley’s Theorem

and the Lang-Weil result, Ax made conjectures:

(3.70a) A Q form of degree d in projective d space has an L point; and

(3.70b) The only PAC field L that is Galois over Q is Q̄.

He was significantly right about (3.70a) as Kollár [Ko07b] showed (§ refcheval-

ley). He was significantly wrong about (3.70b). Not only could be it Galois, it could

also be Hilbertian, as [FrJ78] shows by presenting every projective curve X over

Q as ϕ : X → P1
z with simple branching (branch cycles are 2-cycles) with an ar-

bitrarily high number of branch points. Thus, the Galois closure cover ϕ̂ is regular

with group Sdeg(ϕ) (Rem. 6.8).

Remark 6.8 (Canonical Fields I). The source of PAC, Hilbertian fields is

from an arithmetic form of a Lefschetz argument, as in Rem. 6.7. Nonsingular

projective curves project birationally over Q to give a plane (in P2) curve, X, of

degree deg(X) = nX , with only ordinary double point singularities. Take a suitably

general Q point u ∈ P2 \X, so that any lines L through u meets X at at most one

point with multiplicity 2. With X̃ the projective normalization of X, this produces:

(3.71a) A natural map: x ∈ X 7→ Lx,u = ϕX,u(x) the line through x;

(3.71b) by extension to X̃, ϕ̃X,u : X̃ → P1 is a simple-branched (branch cycles

are 2-cycles) regular cover; and

(3.71c) the monodromy group of ϕ̃X,u is SnX .

Applying HIT to ϕ̃X,u produces∞-ly many z′ ∈ P1
z(Q) giving decomposition fields

K ′z/Q with group SnX disjoint from any a’ priori given finite extension of Q. By

compositing infinitely many of these z′ s, we easily get a field over which X has

infinitely many points.

Alas, we want for any one integer n, just one copy of SnX to appear in the final

composite Lfin, and yet X has infinitely many Lfin points. Here is how they come

from other distinct copies of Sn′ with n′ varying.

List infinitely many copies of X as {(X, j)}∞j=1. Now, induct on j to produce a

field MX,j/Q with group SnX,j over which there is a guaranteed new point mX,j ∈
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X with coordinates not in a field MX,j−1 indicated inductively below. Here is

our device for this. Let nX,j = nX · n′X,j where n′X,j has been selected so that

nX,j > nX,j−1. Consider among all the degree n′X,j maps f : P2 → P2 over Q

one for which the pullback, f∗(X), of X still satisfies the Lefshetz singular point

condition.

Now, with a choice of Q point uf∗(X) as above, apply HIT to produce the

desired SnX,j extension over Q from a point m′ that generates an extension over Q

disjoint from MX,j−1 and for which mX,j
def
= f∗(m′) 6∈MX,j−1. Define MX,j as the

composite of this field with MX,j−1. 17

Remark 6.9 (Canonical Fields II). Shafarevich’s case of Conj. 5.7 replaces∏∞
n=2Gi with a canonical group (and field) (Z)∗ = G(Qcyc/Q). Mightn’t we form

a canonical field based on symmetric groups from the field of composites, QS∞ , of

all extensions of Q having Sn, for some n as Galois group?

It is a canonical, Galois over Q, projective extension of Q that contains the

intersection of all the PAC fields that could appear in Thm. 5.4. Yet, it is not

Hilbertian. No regular extension of Q with any group Sn would have nontrivial

specializations over QS∞ : GQS∞ is not (isomorphic to) Fω.

Other canonical fields appear for which these questions, especially their rela-

tion to Hilbertianity, are valuable. One is the totally real algebraic numbers, Qtr,

consisting of algebraic numbers all of whose conjugates are real (see §6.1.1). We

comment here on the solvable closure, Qsol, of Q. Is this a PAC field [FrJ86, Prob.

1 a, p. 748]1? It is projective (as a subfield of a projective field Qcyc). It isn’t Hilber-

tian or even RG-Hilbertian: No regular solvable group extension has a nontrivial

specialization over Qsol. Iwasawa conjectured GQcyc = Fω [FrJ86, p. 754]2. Alas,

they can’t both be correct: PAC + ω-free implies Hilbertian (Lem. 5.6). 18

Remark 6.10 (Hilbertian-like Properties). The RG-Hilbertian for a field L

considers the specialization property – infinitely many fibers over z′ ∈ P1
z(L) have

the whole group as decomposition group – only for regular Galois covers ϕ̂ : X̂ →
P1
z. The argument of Lem. 5.6 shows, if L is PAC, then it is RG-Hilbertian if

and only if the IGP holds [FrV91, Thm. B]. A general construction produces RG-

Hilbertian PAC fields that are not Hilbertian [FrV92, p. 479] in the following

way. List all finite groups, each just once (up to isomorphism), as G1, G2, . . . with

17We considered only one X. By, however, ordering {(X, j)}appropriate X,1≤j<∞, the above
works by changing MX,j/Q to include the composite of all the fields associated with those (X′, j′)
that come before (X, j). Further, when you get to SnX,j , add any missing Sn′ s with with n′ < nX,j
by taking any regular Sn′ cover and applying HIT to it, keeping it disjoint from extensions
appearing previously in the construction.

18Galois died so long ago. Yet Qsol remains such a mystery. I’d bet that Qsol is not PAC.

Yet, . . . . G. Frey showed the nilpotent closure of Q isn’t PAC, by giving genus 1 curves over Q
without such points. [CW06b, p. 222] exposits on conditions on genus 1 curves that guarantees
they do have Qsol points using the Weil-Chatalet group of the Jacobian of the curve.
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|G1| = 2. Since H =
∏∞
i=1Gi has countable rank, it is a quotient of Fω, represented

as GL with L a PAC field. The projective group formed from the Universal Frattini

cover, H̃ of H (§1.3), therefore embeds as a subgroup of GL.

Now denote the fixed field of H̃ by L∗, which by Thm. B (loc. sit.) is RG-

Hilbertian. If L∗ were Hilbertian, then GL∗ would also be Fω and every finite em-

bedding problem over L∗ would be solvable. Consider, however, the covers H̃ → G1

(factorization through H) and H̃ → S5 (from Fω being profree. There is no way to

solve this embedding problem as that would give A5 as a subgroup of the kernal of

the pullback of G1 in H̃. That kernel, however, is pronilpotent [FrJ86, Lem. 20.2]1

(§1.3), certainly not simple.

6.2.3. Getting to their applications. [?, §6] explains enough of the Cohen-Lenstra

problem to remark on the relevance of (6.21d). Let C(d) count the number of square-

free monic polynomials f ∈ Fq[t] of degree 2d+1, and let N(d) be the sum, over f ,

of h−1, where h is the number of `-torsion elements in the class group of Fq(t; ,
√
f).

They necessarily assume q, a prime power (order of a finite field) is large as a func-

tion of ` and ` 6 |q(q−1). Here they are trying to show C(d)/N(d) approaches 1 as

d 7→ ∞. The ingredients of this result get to the heart of the paper.

(3.72a) The Jacobian of a curve interprets statements about abelian unramified

covers of a curve, and so questions about `-torsion of class numbers. You

then see that counting Fq points on the Hurwitz space for G = D` (dihe-

dral group of degree `) is what you are after.

(3.72b) [?, Cor. 5.8.2] is the stable homology result, essentially saying that if the

jth Q homology is stable along a system of Hurwitz space components as

d gets large, then the jth homology is the same for those Hurwitz space

components as it is for the configuration space which the Hurwitz space

covers.

(3.72c) [?] shows a corresponding isomorphism of the ith étale cohomology of

the Hurwitz space components and of the configuration space assuming d

exceeds some function of i.

(3.72d) Now you need a bound on the (count of points contribution of the) co-

homology outside the range of values of i for which their stability result

holds. They say the argument is exactly as in the proof of [?, Thm. 8.7].

Comment on (3.72d). See (????) and (????) for taking advantage of the nice ar-

guments in [?].

6.2.4. Points on Hurwitz spaces. Actually, Pierre and Michel Emsalem have

facility with a version of the Deligne Mumford compactification of the Hurwitz

space, as does Wewers, which Wewers did at the same time Mochuzuki did it,

possibly influenced (Wewers certainly was, I was in Essen at the time; and I was in
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contact with Ihara at the time) by my 1995 (first) paper on Modular Towers. I gave

a compactification in the paper, based on iterated normalization on the boundary,

very non-DM. The application there was to giving examples of projective systems

of Modular Tower components uniformly defined over Q.

Pierre and Michel aimed at giving `-adic points on the (full) Modular Tower

of any finite group, for a Nielsen class with sufficiently many Harbater-Mumford

representatives (there is a precise quantitative statement). That now seems like a

long time ago, and I have not looked back at this topic since that time.

I went in the Modular Tower direction because, as I told Ellenberg when I

gave lectures at Wisconsin, I didn’t know enough homotopy theory to go after the

specific problem that I wanted, for which one result in that direction was exactly

the stable homotopy result that Ellenberg-Venkatesh-Westerland were going after.

Conway-Fried-Parker-Voelklein was the stable H0 result. So, for me that problem

goes back to, essentially 1993, the beginning formulation of the Modular Tower

program, which had a preliminary paper with Pierre. That was the result quoted

in the abstract below. The certain types of torsion points being cyclotomic torsion

points. This still, as far as I know, unsolved problem – about regular realizations

of dihedral groups – was generalized by Modular Towers to (essentially) all finite

groups.

29. with P. Debes, Nonrigid situations in constructive Galois theory, Pacific

Journal 163 (1994), 81122. This uses the results of ”Rigidity and Real Residue

Classes” on several problems among which are these.

Show every finite group is realized regularly over the totally real (all conjugates

real) numbers. How to construct Sn covers with four branch points with the covers

also having real points (can’t be done with three branch points). Based on Mazur’s

Theorem on torsion points on elliptic curves over the rationals, if m is a prime

larger than 7, then the dihedral group of order 2m isn’t regularly realized over the

rationals with fewer than 6 branch points. #3 amounts to the formulation of the

M(odular) T(ower) program just for dihedral groups (see the html file for URLs

to the MT Time Line), a statement equivalent to finding certain types of torsion

points on hyperelliptic Jacobians. NonRigidGT.html

6.3. Correspondences and other Grothendieck topics.



CHAPTER 4

Spaces test the RIGP

We assiduously use ` as a prime involved in the construction of Frattini covers,

of a given (finite) group G and the moduli spaces associated to it. While p is reserved

for primes that appear for separate purposes, say, reduction of those moduli spaces

modulo p. §5.2, in particular, has gone through the story of how advantage was

made of translating the regular version of the Inverse Galois Problem (at least in

characteristic 0) to the story of rational points on Hurwitz spaces.

Here we start the formation of natural towers of moduli spaces: M(odular)

T(ower)s (MTs). For simplicity we start with the assumption that G is `-perfect.

In, however, §3, we remove that assumption, by avoiding the Ext-Frattini covers

that appear in Cor. 2.6, without removing any significant Frattini covers from con-

sideration. MTs generalize modular curves in precise ways (as in §3.2), while we

can use finite group theory to exert control over from.

Further, towers from essentially any pair (G, `), with G a finite group that is

`-perfect, have revealed much on how to compare them with modular curve towers.

In particular, how their properties, proven and conjectural generalize modular curve

properties, especially around properties of cusps.

§1 constructs the towers, including being precise on when they are nonempty.

It also explains why our structural statements concentrate on `-Frattini covers. For

example, Ch. 3 Prop. 5.9 dealt with all finite groups of necessity. §2 lists the main

MT conjectures, and the progress on them. Here, in using the Branch Cycle Lemma

(BCL) as characterized in Ch. 2 Prop. 4.1, we distinguish between two cases.

(4.1a) When all components of a tower have definition field a finite extension of

Q (possibly just Q itself).

(4.1b) When the definition fields of the tower levels grow with the level, and how

much we can figure what they are.

Even modular curve towers display both phenomena.

§4.2 reexamines Serre’s O(pen)I(mage)T(heorem), pointing to the book’s conclusion.

When reduced Hurwitz spaces are one dimensional, parametrizing covers with

4 branch points, they are upper half plane quotients ramified at the expected 3

points of the j-line (Ch. 2 Prop. 2.7).

155
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Ch. 5 has MTs whose levels are all such j-line covers. This illustrates with

one example that displays phenomena generalizing the OIT subject to them being

akin to modular curve towers – which we also regard as one example. Yet, nowhere

among its tower levels are there any modular curves.

1. Constructing MTs

Any particular tower has levels indexed by a parameter 0 ≤ k < ∞. All levels

are Hurwitz space components defined by Nielsen classes, with level 0 defined by

a Nielsen class Ni(G,C), with C a collection of r ≥ 3 conjugacy classes in G.

Typically in our main applications, as does Ch. 3, this starts with a rational union,

∗C = ∗C1, . . . , ∗Cr∗ , of distinct conjugacy classes in G. As previously, denote the

gcd of the orders of elements in ∗C by N∗C.

For a fixed, centerless, G, the Q points on the corresponding Hurwitz space

H(G,C)in correspond to the complete collection of regular extensons L/Q(z) real-

izing G as a Galois group over Q with C as branch cycles.

Our basic assumption for forming MTs is the following.

(4.2) `′-condition: (`,N∗C) = 1; that is, ∗C consists of `′ classes.

From (4.2), §3.1 canonically produces MTs based on the Ch. 3 Prop. 2.18 con-

struction of the centerless, `-perfect groups k
`Gab

that give the Hurwitz spaces

H( k`Gab
,C)in on which the MT levels fall.

1.1. Constructing Frattini modules. We now outline the proof of [Fr02,

§2.2.1-2.2.2, culminating in Thm. 2.8] adding comments on explicitness. First step:

Replace G by the normalizer, NG(P )
def
= N , in G, to consider the case P is normal

in G, as in (1.15a). To avoid confusion about the characteristics kernels, refer to

them as KN = {kerk(N)}. So, start by constructing `MN .

As in Ch. 3 Rem. 1.9, the Todd-Coxeter (a la Shreier’s) algorithm suffices to

form generators of MP since we explicit relations from ker1 as required. Lem. 1.26

assures that the action of N/P extends to `N/ ker1 = `
1N .

[Fr02, Thm. 2.10] I SHOULD PUT THIS IN THE PAPER PROPER Suppose

p divides the order of g ? Gk. Then, any lift g ? Gk+1 has order p ord(g). Assume g

? Gk is a p? element. A unique p? conjugacy class of Gk+1 lifts g. If G0 is centerless

and p-perfect, so is Gk for all k. The action ofH extends to it by applying Prop. 1.30,

but now we need some additional information. For (6.19b), this is essentially a

special case of (1.15a). Then, except for noting that the rank of (Z`)t as a Z`
module is the same as the dimension t of the vector space (Z/`)t, we get to the real

issue: Constructing `MG. We will use pieces of this in the body of the book. We

regard Fp[G0] as ? G0 ? a left Fp[G0] module and as a right Fp[G0] module. The

induced module indG?0 (M0) is the G0 module M0? ?Fp[G?0] Fp[G0] = M0? ?Fp
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Fp[G0/G?0]. The notation Fp[G0/G?0] is for the right G0 module written as the

vector space ? G0? generated by right cosets of G0 in G0. Then, indG?0 (M0) is a

right G0 module. Suppose N is a right G0 module. Any Z/p[G?0] homomorphism

? : M ? N G0 g extends to a Z/p[G0] module homomorphism IndG?0 (M) ? M by

m ? g ? ?(m) . Recall that M0 is an indecomposable G0 module ([Ben91, p. 11,

Exec. 1] or [FK97, Indecom. Lem. 2.4]). To characterize M0 as the versal module for

exponent p extensions of G0, we use this result [Fri95, Prop. 2.7]. Proposition 2.5.

The cohomology group H2(G0, M0) has dimension one over Fp. The 2-cocycle for

the short exact sequence 1?M0 ?G1 ?G0 ?1 represents a generator. We define any

nontrivial ? ? H2(G0,M0) as G1 up to an automorphism fixed on the G0 quotient

and multiplying M0 by a scalar. �

Then, a particular MT, formed from (G, `, ∗C) starts from a Nielsen class

Ni(G,C) with each class of ∗C, and no others, appearing in C. Since we have dio-

phantine considerations based on the appearance of groups as Galois groups over Q

as a primary goal, eventually those C considered for level 0 will fall among rational

conjugacy class sets of the form ∗C
nnn = ∗C

n1
1 . . . ∗C

nr∗
r∗ from a vector nnn ∈ (Z+)r

∗
.

Again: These form a semi-group under slotwise multiplication which, denoted R∗C.

Now we give the data, based on notation from §??, for the level k Nielsen class

from which level k of a particular tower from Ni(G,C) will appear. This subsection

concludes with an if and only if condition that there are nonempty MTs from this

data.

As in §??, RETURN We list places of increasing difficulty for computing G̃,

given G, including using the idea of lifting orders of ` elements to Schur quotients.

(4.3a)

[Fr02, Prop. 2.8] gives a reasonably effective computation of the kernel of G1 →
G. Remind of this.

Prop.

Remark 1.1 (Central Frattini vs Universal Frattini covers). A representation

cover ψ : R→ G has finite kernel, and it is a Frattini cover. By contrast, ψ̃G → G,

being a projective group, has no points of finite order. Yet, ψG factors through ψ.

Yet, that central Frattini cover plays a signficant role in almost every aspect of

MTs.

(4.4a) Starting with Prop. ?? which, in particular, characterizes when a MT is

nonempty.

(4.4b) Continuing with the characterization of particular types of cusps in the

case when level 0 of a MT is given by Ni(G,C) where C consists of 4

classes.
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§1.7 continues this discussion.

Remark 1.2 (Loewy display need).

2. `-perfect and centerless

[BFr02, Prop. 3.21] has the `-perfect and centerless result that says this repli-

cates up the MT. We went where the motivating problems (the OIT included) led

us. They weren’t handpicked to have general ideas apply to make them compre-

hensible. We discover their definition fields through extensions of the BCL that

connect to properties that sometimes – but not always – trace to topics arising

with the moduli of curves of genus g. For spaces of 3 branch point covers, I suppose

popularly called dessin d’ enfant, there do seem to be inexplicable accidents. In our

experience, they disappear when r ≥ 4.

RETURN Here we will list what we know about the appearance of irreducible

Q components in inner Hurwitz spaces.

3. Ext-free `-Frattini covers

Cor. 2.6 refers to `-Frattini central extensions of the type Ext-Frattini. They

appear from an abelian cover of G
ab

, the commutator quotient of G. For a prime `

that divides G
ab

, they are the natural generalization of the `-Frattini cover Z/`2 →
Z/`. If we allow such extensions for a prime `, then even if G is centerless, then the

1st characteristic `-Frattini cover, 1
`G → G of G, would have a nontrivial center,

contrary to the conclusion of Prop. 2.18.

On the other hand, if we just remove ` from consideration, then we could be

leaving out significant `-Frattini extensions of G. For example, G = Sn, n ≥ 4, and

the prime ` = 2 as in Ex. 2.11, and the case ` = 2 of Serre’s OIT as in §3.2 or the

case ` = 3 of our main example, §3.

3.1. M(odular)T(ower)s from `′ conjugacy classes C.

Conjecture 3.1. There is a C ∈ R∗C for which H(G,C)in, as a moduli space,

has a rational point. In particular, that point would give a regular realization of G

over Q.

Lemma 3.2. Assume (3.1) and also assume the Main Modular Tower conjecture.

Then, the C for which there are (G,C) regular realizations over Q RETURN

So, here are natural questions assuming the RIGP is true.

(4.5a) If there are any Q points among them, for what C would they appear?

Hurwitz space types depend on cover equivalences.

Use inner, reduced: appropriate for RIGP. §?? has brief reminders of elemen-

tary, but key, definitions we will use. For example, the meanings of the following
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phrases for a group G: nilpotent; an `′ subset; being `-perfect; `-Frattini cover; and

Schur multiplier and its relation to Frattini central extensions.

Proposition 3.3. Simple groups: Inadequate for the Inverse Galois Problem

(set S ⊂ G is p′ if its elements are prime to p.)

•
• (G, p) =⇒ ∃ sequence G = G0 ← G1 ← G2 ← . . . of group covers and

integer ν(G, p) with these properties:

• Mk = ker(Gk+1 → G0) = (Z/pk+1)ν(G,p), k ≥ 0 the level.

• If G is centerless, then so are all the Gk s.

• ψk : Gk+1 → G0 is a p-Frattini cover.∗3

• There is a maximal ν(G, p), ν(G, p)max

(> 1 unless G is Z/pt ×sH, (|H|, p) = 1).∗4

[BFr02, §2] cleans up some delicate points related to the action on reduced

Nielsen classes.

Construction comments. �

Definition 3.4.

• Schur-Zassenhaus =⇒ ∃{H(Gk,C)in,rd}∞k=0
def
= HG,C,p.∗5

• Reduced: Equivalence ϕ : X → P1
z and α ◦ ϕ, α ∈ PSL2(C).∗6

•

Definition 3.5 (abelianized inner, reduced MT). Nonempty projec-

tive sequence {H′k}∞k=0 of components on HG,p.

H′k → Sr\(P1)r \∆/PSL2(C)
def
= Jr; J4 = P1

j \ {∞}

• M(G, p,C) Main conj.: Number field K,H′k(K) = ∅, k >> 0.

• Generalizes {X1(pk+1)(K) = ∅ off cusps}∞k>>0.

Any projective sequence {H′u} of components of {H(Gu,C)}∞u=0 is a(n abelian-

ized) Modular Tower; over K if all are defined over K. This generalizes the tower of

modular curves {X1(`u)}u∈N, off their cusps, associated to the dihedral group D`,

` odd. For p a prime, Qp,unr is the maximal unramified extension of Qp, the p-adic

numbers.

(4.6a) Dèbes and Emsalem, separately Wewers, used a Deligne-Mumford com-

pactification for Fried’s result showing GQ permutes Harbater-Mumford

components.

(4.6b) A Modular Tower in (3.59c) over Q is subject to the Main Modular Tower

conjecture: For any number field K, high tower levels should have no K

points. Else, one fell-swoop would give RIGPrealizations of the mysteri-

ous sequence {Gu}∞u=0.
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(4.6c) For each allowable pair (G, `), Dèbes and Emsalem applied (3.59c) to a

fixed Harbater-Mumford (G,C) to regularly realize the whole uniform

sequence of groups {(Gu)}∞u=0 over Qp,unr, for each p not dividing |G|.

Fried formulated the likely generalization of Harbater-Mumford triples (G,C, `),

under the Modular Tower assumptions, referring to C as g-`′. For such C, we can

explicitly label the components of H(G,C) as being g-`′ components. Again, in

the search for where regular realizations might be hiding, and, in light of the Fun-

damental Conjecture, where they likely could not be hiding, the following conjec-

tures/results came about.

(4.7a) Fried showed the Fried-Serre lift invariant is trivial for g-`′ components,

and so above such a component there is a nonempty Modular Tower.

(4.7b) Fried conjectured the only Modular Towers with a projective sequence of

Qp points must be g-`′. Emsalem proved a close approximation to this

conjecture, and showed the conclusion of (4.6c) holds for these Modular

Towers, too.

(4.7c) For C consisting of r = 4 (or less) elements, Fried gave an explicit proof

of the Fundamental conjecture (2005; no K points at high levels), assum-

ing at any level a p-cusp. Cadoret and Tamagawa (2008) gave a general

inexplicit proof.

Explicit in (4.7c) means Fried developed a formula for the genus of reduced

Hurwitz spaces (which for r = 4 are upper half-plane quotients). His computations

showed, under the p-cusp condition – expected at high levels of a g-` Modular

Tower, the genus of tower levels rises with u, giving the conjecture as an appli-

cation of Faltings. Cadoret-Tamagawa is a statement on 1-dimensional families of

abelian varieties, without explicit spaces attached to them, but also an application

of Faltings. Indeed the two proofs relate to the natural `-adic representations hidden

in abelianized Modular Towers stemming from (motivic) components of jacobians

from level 0. This led to the natural next step.

Going beyond the case C has r = 4 four classes leads to tower levels of dimen-

sion r − 3, and so beyond a use of any present version of Falting’s Theorem. So,

for the fundamental theorem, any use even of Lang-Type conjectures requires an

intermediate step that supercedes (4.7c).

The following gives the latest material coming from all involved schools.

(4.8a) Development of cases to test if for r > 4, high Modular Towers levels

have general type: Have sufficiently many holomorphic differentials. For

certain cases, Fried has developed half-canonical differential forms that

can be used for this.



4. ARITHMETIC/GEOMETRIC MONODROMY IN A MT 161

(4.8b) Fried, and Cadoret and Tamagawa, have separate approaches and progress

giving a Serre Open Image Theorem. In Fried’s formulation this relates

the Galois action on the attached `-adic representations to the arithmetic

monodromy group of a Modular Tower, whether over a number field or

not.

(4.8c) Dèbes has expanded on the Beckmann-Black conjectures on regular re-

alization based on asking if there could be for each G a finite number

of Nielsen classes corresponding to (G,C1, . . . ,Cv) so that each regular

realization of G is obtained from pullback of a cover P1 → P1 of a cover

from (G,Ci) for some i ∈ {1, . . . , v}.

Dèbes and Legrand have produced an invariant that gives a minimal value of

v (dependent on G). They have computed that invariant in several cases, thereby

showing that one Nielsen class (vG = 1) will not suffice for most groups G. Whether

some finite vG will always work is still unknown, but it does in some known cases.

4. Arithmetic/Geometric monodromy in a MT

§4.1 starts with the key definition – eventually Frattini – that leads quickly to

the conjectures that guide us to formulating a generalization of Serre’s OIT.

As defined in Ch. 1 (1.12), the sequences k
`Gab

→ G that define MTs are `-

Frattini covers of 0
`G = G. A general case of what we are after would start with C,

`′ conjugacy classes in G, r = rC, for which we investigate Question 4.1.

Question 4.1. Do the monodromy groups over Jr of levels of a MT from

{H( k`Gab
,C)in,rd}∞k=0 inherit eventually `-Frattini properties from the defining cov-

ers in their Nielsen class definition.

A paraphrase of the full conjectures is that MTs are sequences of moduli spaces

whose monodromy groups over the configuration space Jr, and even all their decom-

position groups, inherit this eventually `-Frattini property from the moduli problem

that defines them.

That moduli problem starts from the RIGP. A case that keeps us close to both

problems, where the `-Sylow of G is both normal and abelian starts in Ch. 3 (3.57).

4.1. Eventually Frattini sequences. Prop. 4.3 gives a first consequence of

the eventually Frattini property that suffices as a weak OIT, and thereby OIT-

Conj1 (Conj. 4.5) for MTs that they will satisfy this property. OIT-Conj2 is much

stronger; even in Serre’s OIT there are still unsolved aspects of it.

Definition 4.2. Refer to a sequence of covers of finite groups

· · · → Hk+1 → Hk → · · · → H1 → H0 = G
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as eventually Frattini (resp. eventually `-Frattini) if for some k0, Hk0+l → Hk0 is a

Frattini (resp. `-Frattini) cover for l ≥ 0.

Suppose the projective limit of the Hk s is H̃. We say H̃ is eventually Frattini

since the same property will hold for any cofinal sequence of quotients.

Notation for the extension of the OIT uses Serre’s case in §4.2. In our main

example, as we do in Serre’s case, we use the relation between two systems of Nielsen

classes: {Ni(D`k+1 ,C24)}∞k=0 and {Ni(Z/`k+1)2×sZ/2,C24)}∞k=0. We generalize that

relation below before applying it to our case. A reader will benefit from seeing that

relation in detail on Serre’s case in Ch. 6 §3.3.

Assume HG,C
def
= {H( k`Gab

,C)†,rd}∞k=0, with, say, † either inner or absolute

equivalence, is a tower of Hurwitz spaces defined by the universal abelianized Frat-

tini cover of a group G, with conjugacy classes C for which (NC, `) = 1.

Consider a MT: H′ def
= {H′k}k=0 ⊂ HG,C. The levels of H′ have definite fields

as moduli spaces (as in Def. 4.8). Then, consider the collection of geometric covers

{Φk : H′k → Jr}∞k=0 and their corresponding geometric (resp. arithmetic) mon-

odromy groups {GΦk}∞k=0 (resp. {ĜΦk}∞k=0.

Even if, for a given k, it is possible to take a lower definition field of the cover,

say, as in Ex. 4.18, that won’t be the right definition field for the RIGP and OIT

applications. Denote the projective limit of this sequence by GH′ (resp. ĜH′).

Here is the first property necessary to generalizing the OIT to a MT,

Proposition 4.3 (Weak OIT). Assume GΦ∞ is eventually `-Frattini. Then,

for a general point j′ ∈ Jr(Q̄), the decomposition group of a projective sequence of

points {pppj
′

k }∞k=0 lying over j′ is Ĝϕ∞ .

More generally, suppose for j′ ∈ Jr(Q̄), the (arithmetic) decomposition group

Dj′ of a projective sequence of points {pppj
′

k }∞k=0 on H′ lying over j′ intersects GH′

in an eventually `-Frattini subgroup D≥j′ . Then, Dj′ is RETURNM

Proof. RETURNM

�

Definition 4.4. If If each MT on HG,C satisfies the hypothesis of Prop. 4.3,

we say HG,C has the Weak OIT property.

Conjecture 4.5 (OIT-Conj1). Each MT has the weak OIT property.

Conjecture 4.6 (OIT-Conj2). Each MT has the strong OIT property.

Remark 4.7. Any open subgroup of H̃ will also be eventually Frattini (resp. `-

Frattini). Further, if G∗ → G is a Frattini cover of finite groups, then the pullback

sequence consisting of Hk0 ×G G∗, k ≥ 0 will be eventually Frattini over G∗. RE-

TURNM
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4.2. Monodromy of X0(`k+1) → P1
j . Here is a reminder of the eventually

`-Frattini properties and their application to Hilbert’s Irreducibility Theorem from

Serre’s OIT.

(4.9a) For ` > 3, k0 = 0 (resp. ` = 3, k0 = 1; ` = 2, k0 = 2) and k ≥ k0:

SL2(Z/`k+l+1)/〈±I2〉 → SL2(Z/`k0+1)/〈±I2〉 is `-Frattini, l ≥ 0.

(4.9b) (a) says for this case ( 0
`G = D`, C = C24): M( 0

`G, `,C34) is eventually

`-Frattini; `-Frattini for almost all `.

(4.9c) Take x•`
def
= {xxx`,k+1 ∈ X0(`k+1)}∞k≥k0 , a projective sequence

over j′ ∈ Uj(K); and H(x•` )K its arithmetic monodromy.

(4.9d) If H(x`,k0+1) = GL2(Z/`k0+1)/〈±I2〉, then

H(x•` ) = GL2(Z`)/〈±I2〉.

[Se68, IV-23, Lem. 3 and IV-28, exer. 3] [FrH14, Lem. 3.4 ]

4.3. Jacobian Nielsen class. Consider an inner Nielsen class Ni(G,C)in

with G < G∗ for which the natural extension of C to G∗ gives nonempty Nielsen

classes, Ni(G∗,C). An example we have been using is G = A4, G∗ = A5, and

C = C±32 extended to A5 where the proper notation – in the latter where there is

only one class of 3-cycles – is C34 . This example alone shows that the results can

be quite different, as there are two braid orbits on Ni(A4,C±32)in,rd, but just one

on Ni(A5,C34)in,rd, though for both their compactified components give genus 0

covers of P1
j (Prop. 3.16). Here we consider the process of going from Ni(G,C)in to

RETURNM

4.4. Computing Schur multipliers and lift Invariants.

Remark 4.8. Note the difference with the lift invariant if you include a conju-

gacy class of order divisible by `.

Denote the conjugacy class of g ∈ G by Cg = CG,g.

(4.10a) Frattini cover G∗ → G: Group cover with restriction to any proper sub-

group of G∗ not a cover.

(4.10b) Schur-Zassenhaus: If g ∈ G and (|g|, | ker(G∗/G)|) = 1, then

Cg lifts uniquely to Cĝ, ĝ ∈ G∗ 7→ g ∈ G with |g| = |ĝ|.
(4.10c) Central Frattini extension: ψ : R → G: ker(R → G) is a quotient of the

Schur multiplier, SMG, of G.

(4.10d) Lift invariant if C is (p′ for p dividing) ker(ψ) : ∗10

For ggg ∈ Ni(G,C), sR/G(ggg) =

r∏
i=1

ĝi ∈ ker(R/G).
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4.5. M(G, p,C) monodromy statement.

• Rank 0 Conj.: Any Modular Tower has geometric monodromy (over Jr;

over P1
j when r = 4) eventually p-Frattini.

• r = 4⇒ MT levels are upper half-plane quotients.

• Rank t ≥ 0 Conj.: Start with (Z)t ×sH. Take Gp = (Z/p)t ×sH and C

appropriate.

Then, for a. a. p the Modular Tower is p-Frattini:

the p-Frattini conclusion for modular curves holds here, too.∗12



CHAPTER 5

Comparing general MTs with Serre’s case

GK orbits on generators of `-adic lines (with a Z/2-action) on elliptic curve

`-adic 1st cohomology.

1. The Comparison Framework

1.1. Analog to X0(`k+1) and X1(`k+1) Modular Curves.

(5.1a) All modular curves came from a rank 1 (D = Z×sZ/2,C24), or a rank 2

(2D = (Z)2 ×sZ/2,C24) MT.

(5.1b) To illustrate general ideas:

D, 2D ⇒ G = (Z)2 ×sZ/3, 2G = (Z)4 ×sZ/3.

(5.1c) Z/3 = H = 〈α〉 action on (Z)2: Through α =
(

0 1
−1 −1

)
, induced on

Vpk+1 = (Z/pk+1)2, and on 2Vpk+1 = (Z/pk+1)4.

C = C±32 – two copies each of α and α−1.

1.1.1. Reduced spaces for ` = 2. Return to Comment on (2.35d).

(5.2a) Our case: `-adic H1 of genus 2 curves with Z/3 (faithful) action. Compare

GK orbits of 2-dimensional p-adic subspaces preserved by Z/3 with MT

arithmetic monodromy.

(5.2b) Last slides: Defy mysterious correspondences –Grothendieck (late ’60s):

Detect GQ non-conjugate MT s. Cusp geometry ⇒ definition fields of

level k MT components.

• Branch-Cycle Lemma;

• Fried-Serre Lift invariant on a small Heisenberg group; and

• Weil pairing from a large Heisenberg group.

2. Computation of the Lift Invariant

Michael Fried ¡michaeldavidfried@gmail.com¿ Subject: I thought to add some-

thing that I could not include in my one page on what was accomplished on the

Open Image Theorem case at Chern Institute Date: January 27, 2017 at 8:44:22

PM MST To: Pierre Dbes ¡Pierre.Debes@univ-lille1.fr¿, Benjamin Collas ¡ben-

jamin.collas@gmail.com¿

Why my first attempt to write the one page failed is explained by my trying to

include something of what is below. It just wasn’t possible.

165
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In my writeup I used the termK-bound, meaning a Modular Tower had all levels

defined over a specific field K (number field usually). The basic result for an OIT

is a comparison of what happens in the Decomposition group of a Modular Tower

to the Arithmetic monodromy group of the tower. There is a hard, NECESSARY

initial step: You must show that the geometric tower monodromy is almost `-Frattini

(`-Frattini from some point on) and `-Frattini for almost all `.

Part of the structure that works with Modular Towers is that the monodromy

action of the base on the fibers of the tower is through (a subgroup of) the braid

group. The family of Hurwitz spaces I took at Chern had a full set of primes,

and four repetitions of a particular conjugacy class, so I could fully compare with

modular curve towers. (As always, when there are four conjugacy classes, the re-

duced Hurwitz space levels are upper-half plane quotients ramified at the expected

three points. Of course, these aren’t modular curves, and they aren’t defined by

congruence subgroups, or I wouldn’t have taken them.

Unlike modular curves there are several types of Modular Towers. Recall, a(n

abelian) Modular Tower is a projective sequence of irreducible components on a

sequence of Hurwitz spaces defined by the `-Frattini (abelianized) characteristic

quotients given by a finite group.

These distinct Modular Towers for a given prime ` are separated by their lift

invariants for the appropriate group. Here that comes, for each `, from the small

Heisenberg group for the prime `. (Recall: For alternating groups it was their spin

cover.)

1. Type 1 have Fried-Serre lift invariant that is `′, falling in (Z`)∗ (it makes

sense to take a projective limit of the lift invariants of the levels). At each level

the components are all conjugate over Q. There is formula for the lift invariant,

different (of course) than the formula for the Alternating groups as given by Fried-

Serre. Finding that formula is the hardest result in the paper. The definition field

result is a special case of a general theorem never in print previously.

2. Type 2 modular towers have lift invariant in ker(Z` → Z/`). Mod ` these

are Harbater-Mumford components. There are several of them – a precise number

dependent on ` – for each ` > 6. I describe these Modular Towers explicitly.

For Type #2, I still have unanswered questions about component definition

fields. For example, for the pure Harbater-Mumford types, I don’t know if they are

Q-bound, since their lift invariants are 0. This is the best test case I have found

for guessing precisely between Towers that have or do not have a Q-bound. I have

decided to publish the paper leaving this a puzzle.
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3. Our main example, and the Small Heisenberg group

In our examples, we will be illustrating Propositions 3.1, 3.2 and 3.5 of Ch. 1.

Denote (Z/`k+1)2 by k+1
` V and k+1

` V ×sZ/3 by k
`G. In §3.1 we start with the analog

of X1(Z/`k+1) (for which there is a natural analog also of X0(Z/`k+1)).

Then, as in the modular curve case Ch. 6 §3.3.1, we go to a Jacobian version in

§4. Here the group will change from k
`G to

(5.3) k+1
` G

jac

def
= (k+1

` V )2 ×sZ/3 (C = C±32 remains the same).

Analogous to the dihedral case with ` = 2, until §3.3.1, we avoid ` = 3. Then:

(5.4)
k+1
` V mod ` has a 1-dimensional α-eigenspace

if and only if α2+α+1 ≡ 0 mod ` has a solution ⇔ ` ≡ 2 mod 3.

Definition 3.1 (α-span). For k+1
` G (resp. k+1

` G
jac

in (5.3)) a subset U of k+1
` V

(resp. (k+1
` V )2) is said to α-span if 〈U, αU〉 = k+1

` V (resp. (k+1
` V )2).

3.1. The Small Heisenberg group. The key group in this section is the

Small Heisenberg group for ` > 3:

(5.5) H(Z/`k+1) =

{
M(x, y, z)

def
=

1 x z
0 1 y
0 0 1

 , x, y, z ∈ Z/`k+1

}
.

So, there is a natural map

ψH : H(Z/`k+1)→ k+1
` V : M(x, y, z) 7→ (x, y) = vvv ∈ k+1

` V,

for which ker(ψH) = Z/`k+1. As in Ex. 2.7 we use the left action (here of Z/3) to

describe the extension of Z/3 = 〈α〉 to the group of (5.5).

Lemma 3.2. For ` > 2 each element in H(Z/`k+1) has order `k+1. By contrast,

H(Z/2k+1) has elements of order 2k+2, and for k = 0 it is D4, dihedral of order 8.

Proof. Write M(x, y, z) as I3 + A and put it to the `k+1 power. Since Au is

the 0 matrix for u > 2, the expansion gives

I3 + `k+1A+
`k+1(`k+1−1)

2
A2

which is I3 unless, ` = 2 and `k+1(`k+1−1)
2 · (xy) is nonzero mod `k+1, or xy mod 2

is nonzero. Therefore, for k = 0, the group is nonabelian and has two classes of

elements of order 2. So is dihedral. �

3.1.1. Conjugacy classes. Use ψH (with ` and its power understood) even with

the Z/3 action. The conjugacy class lift of α0 =
(
α 000
0 1

)
to k+1

` G is

(5.6)

{(
1 vvv
0 1

)
α0

(
1 −vvv
0 1

)
=
(
α vvv−αvvv
0 1

) def
= αvvv | vvv ∈ k+1

` V
}
.

We often use 1−αvvv for vvv−αvvv. Similarly, α−1
vvv =

(
α−1 1−α−1

vvv
0 1

)
.



168 5. COMPARING GENERAL MTS WITH SERRE’S CASE

Denote the n× n identity matrix by In. For example,
(

1 0
0 1

)
= I2.

The action of α comes is from the permutation action of Sn on (Z)n (here

n = 3). Then, mod out by the Sn stable module 〈(1, . . . , 1)〉, to get Zn−1.

Elements in Ni( k+1
` G,C±32)in will be 4-tuples with entries denoted either αvvv

or α−1
vvv . Each element in the Nielsen class is inner equivalent to an element in

(5.7) T±±
def
= {gggvvv2,vvv3 = (α0, α

−1
vvv2 , αvvv3 , α

−1
vvv4 )}.

with the correct extra notation, say `k+1, understood.

Lemma 3.3. Since k+1
` V → 1

`V is a Frattini cover, vvv ∈ k+1
` V α-spans if and only

if vvv mod ` is in no α eigenspace. By Def. 3.2, an HM rep. in T±± has vvv2 = 000,

with vvv3 mod ` in no α eigenspace. From product-one,

(5.8) αvvv3α
−1
vvv4 =

(
α 1−αvvv3
0 1

)(
α−1 1−α−1

vvv4
0 1

)
= I2; or 1−α(vvv3−vvv4) = 000.

That is, vvv3 = vvv4 since ker(1−α) = 0.

Proof. For generation to apply, 〈α0, αvvv3〉 = k
`G. Since k+1

` G → 0
`G is a

Frattini cover, we need only consider when

〈α0, αvvv3 mod `〉 = 〈α0, α
−1
0 αvvv3 mod `〉 = 0

`G.

That happens if and only if 1−αvvv3 α-spans. If αvvv3 = µvvv3, µ ∈ Z/`k+1, then 1−αvvv3 =

(1−µ)vvv3, an invertible relation. This shows vvv3 α-spans, and it does α-span if and

only if it defines an HM rep. by the formula above. �

3.1.2. The lift invariant and DI elements. We already saw the definition of DI

elements in the case of G = A4 for the conjugacy classes C = C±32 .

Definition 3.4 (D(ouble)I(dentity)). DI elements in T±± are those for which

either vvv3 = 000, or vvv2 = vvv4.

Prop. 3.5 expands on the exercises [Br82, p. 97, Ex. 8 and p. 127, Exs. 4-5] to

describe the Comm part of the universal coefficient theorem for q = 2 when G is

abelian. Cor. 3.6 concludes that the small Heisenberg group is the universal central

extension of k
`G.

Proposition 3.5. Given a central extension A → E → B with B abelian,

denote the factor set associated to it in Ch. 1 §1.2.2 by ce. Define c̃e : B × B → A

by (b1, b2) 7→ ce(b1, b2)−ce(b2, b1). With Λ2(B) the second exterior product of B,1

this gives a map of H2(B,A) to Hom(Λ2(B), A), with the Ext extensions in the

kernel. This produces an exact sequence:

(5.9) 0→ Ext(B,A)→ H2(B,A)
c̃e−−→ Hom(Λ2(B), A)→ 0

1Λ2(B) = B ⊗B/〈b1 ⊗ b2−b2 ⊗ b1 | b1, b2 ∈ B〉
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that is (3.17) in disguise with Λ2(B) identifying with the Schur module H2(B,Z),

for B.

Proof. Consider a central `-Frattini extension ψ : H → B defined by a factor

set ce : B × B → A as in Ch. 1 §1.2.2. With A = ker(ψ), that gives an element

of H2(B,A). From Cor. 2.6, commutators of H that lie in ker(ψ) determine the

lift invariant to ψ. With, however, B abelian, any commutator h1h2h
−1
1 h−1

2 is in

ker(ψ). Further, using the factor set, in the description of this extension, we may

write this commutator as

(5.10)

((
b1 a1
0 1

)(
b2 a2
0 1

))((
b2 a2
0 1

)(
b1 a1
0 1

))−1
=(

b1b2 b1∗a2+a1+ce(b1,b2)
0 1

)(
b2b1 b2∗a1+a2+ce(b2,b1)

0 1

)−1.

Now apply that b1b2 = b2b1 (B abelian) and b2 ∗ a1 = a1 (central extension) etc. to

conclude the result is c̃e(b1, b2) as given in the statement of the lemma.

This shows that the Comm part of H2(B,A) maps through Hom(Λ2(B), A),

as in Def. 2.2 or Def. 2.5 and Rem. 2.7, with kernel the Ext part. The resemblance

of this sequence to the universal coefficient theorem (3.17) suggests that Λ2(B)

identifies with the Schur module H2(B,Z), for B.

Indeed, [Br82, V. Thm. (6.4) (iii)] (with k = Z) says exactly that. Then, with

the substitution of Λ2(B) for H2(G,Z) in (3.17) for q = 2, [Br82, Exs. 4. (a) and

5] says the sequences may be identified through the map c̃e above. Ch. 6 §??

�

Corollary 3.6. Extend Z/3 on B = k+1
` V to H(Z/`k+1) by acting trivially on

ker(ψH(Z/`k+1)). Thus, H(Z/`k+1)×sZ/3 is the universal central extension of k+1
` G

for ` > 3. For ` = 2, it is

Proof. In the case at hand, B = k+1
` V . Then, Λ2(B) is a 1-dimensional

Z/`k+1[B] module. We show Z/3 acts trivially on it. The action of α is through

(Z/`k+1)∗, of order (`−1)`k, if the action for k = 0 is trivial then, on the kernel the

action is an element of order ` contrary to the order of α. So, it suffices to see the

action is trivial for k = 0.

If ` ≡ 2 mod 3 then α acts irreducibly on B. So, it has no eigenvectors in

Z/`, and it must act trivially. if, however, ` ≡ 1 mod 3, then α has two distinct

eigenvalues a1, a2, for vectors vvv1, vvv2 ∈ B with product 1 (the constant coefficient of

x3−1
x−1 ). Then, Λ2(B) is generated by vvv1 ∧ vvv2 on which α acts as

vvv1 ∧ vvv2 7→ α(vvv1) ∧ α(vvv2) = a1a2vvv1 ∧ vvv2 = vvv1 ∧ vvv2.

This proves the claim. �

In the next proposition denote Ni( k+1
` G,C+33)in (resp. Ni( k+1

` G,C±32)in) by

Ni`k+1,33 (resp. Ni`k+1,±32).
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Proposition 3.7. Elements of Ni`k+1,33 have representatives of form

gggwww = (α0, αwww2 , αwww3) with www3 = −wwwα2 .

All ggg∗ ∈ Ni`k+1,33 have lift invariant s33(ggg∗) ∈ (Z/`k+1)∗ ⊂ ker(ψH).

If for some some ggg∗ ∈ Ni`k+1,33 s33(ggg∗) = µ, then µ = s±32(ggg) for ggg ∈ Ni`k+1,±32

a DI element [FrH15, Prop. 4.18].

Elements with `-divisible lift invariant and DI reps. have distinct braid orbits.

Main orbit result on Ni( 0
`G,C+32−32)in,rd uses this quantity for ` > 3:

K` =
`± 1

6
, ` ≡ ∓1 mod 3.

We have already done the result for ` = 2 (and k = 0) in Ch. 2 §3.16, where there is

one HM and one DI orbit. That case is different in ways from the case of general

`, but mostly because the maximal `-central Frattini cover is of a different nature

for ` = 2, than for ` > 3.

Corollary 3.8 (Level 0 Main Result). For ` > 3 prime and k = 0:

(5.11a) Classes with trivial lift invariant fall in Kp HM braid orbits. Each inter-

sects T`,±±,1−deg in `(`−1) elements.

(5.11b) Orbits have nontrivial lift invariant if and only if they are double identity,

and that distinguishes the orbits.

(5.11c) Each DI orbit intersects T`,±±,1−deg in K`(`−1) elements.

§3.1.3 gives the proof of Prop. 3.7 and its corollary, starting from a general idea

of computing the universal `-Frattini extension. §3.1.4 gives a complete description

of the braid orbits on these Nielsen classes at all levels. This is an example of where

we are able to gives succinct labels to braid orbits based on the types of cusps they

contain. That is, at the end of this subsection we precisely know all the braid orbits.

on Ni`k+1,±32 for all `, (`, 3) = 1, and all k.

Remark 3.9. Notation of (5.6) is compatible with Ch. 6 §3.3 for an entry in

ggg ∈ Ni(D`k+1 ,C24) is
( −1 a

0 1

)
. A more precise analog would be the conjugate

(
1 a
0 1

)( −1 0
0 1

)(
1 −a
0 1

)
=
( −1 2a

0 1

)
.

Still, with (`, 2) = 1, there was no loss – and improved notation – in replacing 2a

by a, and regarding
( −1 0

0 1

)
as the analog of α0.2

3.1.3. Proof of Prop. 3.7.

3.1.4. Proof of Cor. 3.8.

2Ch. 6 §3.3.3 makes the large adjustments in Serre’s case for preserving the rubric even when

` = 2, as we will do for this case with ` = 3.
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3.2. 1-degenerates in Ni(Gpk+1 ,C+32−32)in.

• gggvvv2,vvv3 ∈ T±±: product-one ↔ vvv2 − vvv3 + vvv4 = 000.

• Generation ↔ 〈vvv2, vvv3, vvv4〉 contains an α-gen. of Vpk+1 .

• 1-degeneracy: 〈vvv2, vvv3, vvv4〉 ' Z/pk+1. Since p 6= 2 this is equivalent vvvj =

mjvvv with vvv = vvvi for some i, j = 1, 2, 3.

• K∗ = 〈q2
2 , q

2
3 , sh〉 is the stabilizer of the collection T±± mod Q′′ with

[K∗ : 〈q2
2 , q

2
3〉] = 2.

3.3. Braid orbits ↔ 1-degenerates, T±±,1−deg, in T±±.

3.3.1. The case ` = 3.

4. The Jacobian case, (5.1b)

As above, denote (Z/`k+1)2 by k+1
` V and (k+1

` V )2 ×s Z/3 by k
`Gjac. Then,

the Hurwitz spaces on which we form our MTs is given by the Nielsen class

Ni( k`Gjac,C±32)
def
= Ni`k+1,±32,jac. This is an analog of the modular curve (Jaco-

bian) case given by the notation of Ch. 6§3.3.1.

Below we refer to the 1st (resp. 2nd) copy of k+1
` V in (k+1

` V )2 as the 1st

(resp. 2nd) 1
2 -space. As in Rem. 2.17, there are good reasons for dealing with de-

composable `-Frattini kernels for all ` in the Jacobian cases.

4.1. Jacobian Nielsen classes. An analog of T±± represents braid orbits of

Ni( k+1
` Gjac,C±32)

def
= Ni`k+1,±32,jac as in Prop. 3.7:

(5.12) T±± jac
def
= {(α0, α

−1
(vvv2,vvv′2), α(vvv3,vvv′3), α

−1
(vvv4,vvv′4))

def
= gggvvvvvvvvv,vvvvvvvvv′}(vvv2,vvv′2),(vvv3,vvv′3)∈(k+1

` V )2

where we understand that (vvv2, vvv
′
2), (vvv3, vvv

′
3) determine (vvv4, vvv

′
4) (from product-one)

and they α-span (k+1
` V )2. Lem. 4.1 says we may take an element gggvvvvvvvvv,vvvvvvvvv′ ∈ T±± jac so

that vvvvvvvvv is in one of the normal forms – HM or DI – given by Cor. 3.8.

From product-one,

(5.13)

k+1
` G = 〈α0, α0α

−1
(vvv2,vvv′2), α(vvv3,vvv′3)α

−1
0 〉

= 〈α0,
(

1 1−α(vvv2,vvv
′
2)

0 1

)
,
(

1 1−α(vvv3,vvv
′
3)

0 1

)
〉.

Lemma 4.1. Take k = 0. With no loss for braid orbit lists assume of gggvvvvvvvvv,vvvvvvvvv′ :

(5.14a) gggvvvvvvvvv and gggvvvvvvvvv′ are in Ni`,±32 ; and either

(5.14b) vvvvvvvvv = (000,000, vvv3, vvv3), (5.8), an HM orbit case; or

(5.14c) vvvvvvvvv = (000, vvv2,000,−vvv2), a DI orbit case.

Then, gggvvvvvvvvv,vvvvvvvvv′ satisfying (5.12) is equivalent, in case (5.14b) (resp. (5.14c)) to vvv3

(resp. vvv2) α-spans and then that 〈vvv′2, vvv′3〉 = k+1
` V .

Proof. The natural map k+1
` Gjac → k+1

` G extends to the Nielsen classes and

is compatible with the braid action. Therefore, with no loss for representatives of
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braid orbits, assume for gggvvvvvvvvv,vvvvvvvvv′ that gggvvvvvvvvv is one of the normal forms for the orbits. To

see that the 4th entry gives product-one in (5.14c), check:(
α 0
0 1

)(
α−1 1−α−1

vvv2
0 1

)(
α 0
0 1

)(
α−1 −1−α−1

vvv2
0 1

)
=
(

1 α−1vvv2
0 1

)(
1 −α−1vvv2
0 1

)
.

For (5.12) to hold requires in case (5.14b) (resp. (5.14c)) that vvv3 (resp. vvv2)

α-spans k+1
` V . For (5.14b), apply (5.13). Then,

(5.15) 1−α(000, vvv′2) and 1−α(vvv3, vvv
′
3) α-span (1

`V )2.

We know that vvv3 α-spans 1
`V , but assume vvv′2, vvv

′
3 do not span 1

`V , but lie in a 1-dim

subspace. Then, RETURNM �



CHAPTER 6

Historical Resources and Perspectives

As usual ` refers to a key prime of consideration. We could have regarded this

chapter as “Appendices,” since the sections are independent, though they are surely

more than that. For example, §3 inspects, in revisiting Serre’s version of the OIT

to connect to our main definitions, the following topics:

• eventually `-Frattini for the primes 2 and 3;

• visualizing of Weil’s pairing on H1(X,Z`) as a lift invariant, with X an

elliptic curve;

• connecting the Jacobian Nielsen class Ni((Z/`)2 ×s Z/2,C24) and the

Nielsen class Ni(Z/`×sZ/2,C24); and

• passing from specific Nielsen classes to modular curves.

We treated it so as a resource for what we do almost everywhere in the book,

enhancing our connection to modular curves, though we have gone into territory

controlled by curves that replace elliptic curves as the driver of our problems.

We treated it thus, so the reader unacquinted with Serre’s OIT, or perhaps

even having forgotten about it, would not have that dominate the mathematical

stories featuring the connection between the RIGP and the expanded OIT.

Or quite differently, how in §1.4 – to augment the treatment of the cohomology

of extensions starting in Ch. 1 §1.2.2 – we make a path through the huge topics

of cohomology of groups and modular representations. We base this on what we

learned/used partly from [Nor62], [Br82] and [Be91], and the many appearances

of “small” cohomology arguments in both of Serre’s books [Se68] and [Se92].

In a paraphrase here, of a paraphrase of a statement of Serre’s about the RIGP

with which I concluded [Fr94],

it is astonishing what one can learn of cohomological topics

from confronting significant extensions of groups.

1. Group, group covers and homological algebra

For a group the word rank usually means the number of elements required to

generate the group. If the group is projective, it refers to topological generation,

meaning number of elements required to give a subgroup whose closure is the whole

173
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group. In special cases, it can refer to the rank, not of the group, but of a particularly

important subgroup. For a group H, we will denote its (topological) rank by rk(H).

Isomorphism is the criterion for two groups to be alike. Some groups are suf-

ficiently similar that they will likely collect together in descriptions for the rest of

time. Like (finite) abelian or nilpotent groups (Ch. 1 §1.3), with their rank and the

primes dividing their order, standing out as invariants. §1.3 introduces those groups

this book uses to put the Inverse Galois Problem in a context with other classical

problems of arithmetic geometry.

Mathematicians now accept the classification of finite simple groups as a mile-

stone. We don’t expect a reader to know it in any detail; the author is no expert on

it, either. Our goals use as a starting point only examples that most readers would

have had in a first course in graduate algebra.

1.1. Finite groups and their algebras. §1.1.1 reminds of the topic of pairs

(G,T ), a group and an attached faithful permutation representation. When regard-

ing group elements as functions or operators we apply the elements in the order in

which they are written from left to right.

We give a much slower path to group algebras, starting with reminders of Jordan

canonical form. The easiest way for mathematicians, raised on linear algebra, to see

groups is through representations of their elements as matrices acting on the left

of elements of a vector space. Therefore, §1.3 uses a left action for the traditional

look of Jordan canonical form. Yet, in many chapters of this book most groups will

act from the right.

We use this – based on Jordan canonical form – to introduce the simplest

algebras with these essential ingredients: central, orthogonal, idempotents, aided by

the Jacobson radical, and a recognizable version of Loewy display for illustrating

irreducible constituents of a module this isn’t completely reducible.

§1.3.1 then introduces these ingredients in generality sufficient to get to form the

cuminating objects of this book. Starting from a group G, and an `-perfect prime of

G,1 our basic group theoretic object is the the universal `-Frattini cover 1
`G→ G of

G, §1.4.1. In many ways, the characteristic `-Frattini module 1
`M = `MG of (1.10)

for the group algebra, F`[G] is essentially equivalent to it.

Recall the Universal abelianized `-Frattini cover of G (1.11):

(6.1) VG,`
def
= (Z`)ν(G,`) → `G̃ab

→ G, ν(G, `) = dimZ/`(`MG).

This consists, for the G action of a series of `MG modules for which the kernel of

the map is the source of the main `-adic representations in the title of the book.

This more tractible object sits perfectly between considerations of the RIGP or

OIT the MT s attached to it already have conjectures and results about them.

1We will explain how to drop the `-perfect condition for our goals.
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There can, however, be other such extensions, in (6.20) and related to (6.1), from

which we may form canonical sequences of moduli spaces for which the conjectures

and already established results are also expected.

1.1.1. Notation for group actions. There is a major difference between them

on how they act naturally on elements as functions. Our major computations are

with Nielsen classes (§2.2). These are r-tuples of elements from groups, usually

often understood to be permutation groups, though they could be elements of some

algebraic, even affine, group.

Right vs Left Action: Computations often appear as a series of actions formed

from a string of group elements, say, written as g1g2g3 · · · gr, acting. That is the

multiplication is read as

“g1, times g2, times g3, . . . ”.

Here we will mean that g1 acts first, then g2, etc. Nielsen classes consist of arrays,

say, ggg, of such elements on which act elements qi (called braids) from the Hurwitz

monodromy group Hr. Here, two, we sometimes show that action as a series, as in

this notation:

(ggg) 7→ (ggg)q′ 7→ ((ggg)q′)q′′ 7→ (((ggg)q′)q′′)q′′

read as q′ acts, then q′′ acts on the result, etc. All of this is compatible with reading

multiplication from left to right, and so acting from left to right.

When we must make an exception to regard elements of a group as matrices,

acting as functions from linear algebra, we do our best to forwarn the reader; noting

how someone could switch to our left-right notation if they wanted. Example: In

regarding elements of PGL2(C) (linear fractional transformations) as acting from

matrices we might have,

from the left
(
a b
c d

)(
z
1

)
7→
(
az+b
cz+d

)
versus

from the right (z 1)
(
a c
b d

)
7→ (az+b cz+d).

Permutation representations: We give a permutation representation (of degree

n) as a pair (G,T ) with T : G → Sn a homorphism of groups. Usually we assume

T is transitive: for i, j ∈ {1, . . . , n} there exists g ∈ G for which (i)T (g) = j. If it is

transitive, then giving (G,T ) is equivalent to giving (G,H) with H a subgroup of

index (G : H) = n.

A right coset of H in G is a subset Hm = {hm | h ∈ H}. That means, G is a

disjoint union of precisely n distinct (we usually take right, but if you are consistent,

then you can take left) cosets ∪̇ni=1Hmi = G.



176 6. HISTORICAL RESOURCES AND PERSPECTIVES

Then the right action of G on these cosets is well-defined and equivalent to the

permutation representation whereby we take

H = {g ∈ G | (1)T (g) = 1} def
= G(T, 1).

Usually, we also assume G is faithful, or its kernel ker(T ) is {1} (trivial). A

permutation representation is primitive if between G and G(T, 1) there are no

proper subgroups. In constructing covers in §2, these correspond to covers without

decomposition: composition as two covers of degree exceeding 1 as in Lem. 2.3.

There is a classification of groups with a primitive permutation representation.

Excluding those related to sporadic simple groups, this divides into two types: those

based on the series of finite simple groups, and those related to affine groups [AsS]

with the latter not considered classifiable at this time. This result is called the

Aschbacher–O’nan–Scott Theorem.

There are well-known problems that reduce to looking at primitive groups,

then solved by a combination of arithmetic geometry interpreting a property about

ramification groups theoretically (see §1.4.1). Then, group theorists – who knew the

classification well – weeded out those primitive groups for which the ramification

groups appear appropriately. These problems usually had precise phrasings on the

Arithmetic/Geometric monodromy of a (usually sphere) cover. Thus, they were not

pure RIGP problems. [FrGS] may be the first that required having on the team

members who know the classification well, to complete an analysis in this style.

I know of no one in print who has undertaken to provide the tools to enhance

this classification precisely to general (G,T ), because one must be intrepid with

these more sophisticated tools to try it. Still, the tools are there, using wreath

products and Frattini covers. That suggests that one can treat finite groups that

arise from covers in a way that will one day allow names for covers – through the

use of their Galois closures (and permutation representations). I think it enhances

this book and the idea of a Galois closure to say that.

1.2. Special collections of groups. While our moduli space considerations

play so much on Frattini covers, we always have considerations involving semi-direct

products. Wreath products §1.2.1 and affine groups §1.2.2 being two such.

1.2.1. Wreath products. For any group H and integer n, denote the associated

wreath product by H oSn
def
= Hn×sSn. We give the (right) action of σ on (h1, . . . , hn)

by σ : (h1, . . . , hn) 7→ (h(1)σ, . . . , h(n)σ)
def
= hhhσ. If, in the notation of Ch. 1 §1.2, we

write its elements as
(
σ 0
hhh 1

)
, then the (symbolic) multiplication gives this:

(
σ 0
hhh 1

)(
σ′ 0
hhh′ 1

)
=
( σσ′ 0

hhhσ
′
·hhh′ 1

)
.
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A group G ≥ H with (G : H) = n: Then, explicate the degree n permutation

representation TH : G ∈ Sn by choosing (right) coset representatives g∗1 , . . . , g
∗
n.

This gives, g∗j g = hjg
∗
(j)σ, j = 1, . . . , n, defining g

ψggg∗−−→
(

σ 0
(h1,...,hn) 1

)
∈ H o Sn.

Now suppose, for k a field, that k[H] acts on a module M , Then, H o Sn acts

on mmm ∈ Mn by the formula used in §1.1.1 (from the right) for linear fractional

transformations:
(
mmm 1

) (
σ 0
hhh 1

)
=
(
mmmσ · hhh 1

)
.

Problem 1.1. Check that ψggg∗ is a homomorphism given by the expected mul-

tiplication. If you change ggg∗ to ggg∗∗ then ggg∗∗ = hhh′ · ggg∗ for some hhh′ ∈ Hn.

Show that ψggg∗∗ =
(

1 0
hhh′ 1

)
ψggg∗
(

1 0
(hhh′)−1 1

)
.

Prob. 1.24 uses this to interpret the G module M↑G induced from M .

Monodromy group of a cover composite: Suppose W
ψX−−→X ψZ−−→Z is a sequence

of covers of irreducible algebraic varieties, say as in Ch. 1 §2.1. For simplicity,

assume they are defined over C.

We wish to compute the Galois closure group, GW/Z , of the function field ex-

tension, C(W )/C(Z), from our knowledge of the Galois closure group, GW/X ≤ Sn
(n = deg(ψX)) and GX/Z ≤ Sm (m = deg(ψZ)) of resp. ψX and ψZ .

Use the primitive element theorem to write the respective field extensions

C(W )/C(Z),C(X)/C(Z),C(W )/C(X) using variables uX/Z , uW/X so that

C(X) = C(Z)(uX/Z) and C(W ) = C(Z)(uX/Z , uW/X).

In referring to conjugates in the next discussion we mean elements in an al-

gebraic closure of C(Z). Denote the polynomial in the variable u∗ for uW,X over

C(Z)(uX,Z) by P (u∗) ∈ C(Z)(uX,Z)[u∗].

This gives polynomial equations for conjugates u1
X/Z , . . . , u

m
X/Z of u1

X/Z = uX/Z

over C(Z). Substituting in the coefficients of P (u∗) for the conjugates of u1
X/Z

gives polynomials Pk(u∗) ∈ C(Z)(ukX/Z)[u∗], for k = 1, . . . ,m. For each k, this

gives conjugates uk,jW/X , j = 1, . . . , n, for the solutions of Pk(uW/X).

Each Galois extension of C(X) obtained by adjoining {uk,jW/X , j = 1, . . . , n} to

C(Z)(uX/Z) has group identified with GW/X ≤ Sn. This identifies GW/Z with a

subgroup of the wreath product GW/X oGX/Z where the semi-direct product action

of GX/Z on GnW/X is given by our discussion of the conjugates of u1
X/Z .

Remark 1.2. The simplest example of computing the composite Galois closure

above occurs where W = P1
w, X = P1

x and Z = P1
z, using Luroth’s Theorem that

says that we may choose w so that x and z are rational functions in w, and you

detect the composite as given by f(w) = z = g(h(w)) with h(w) = x and h, g are

rational functions in one variable. Additionally, we have RET and branch cycles to

aid in the computation.
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In many situations, however, the starting data is branch cycles for f(w) and

g(x), where branch cycles for h must be surmized from these. The best situation is

when – on general principles – you get the whole wreath product above for GW/Z .

In, however, many problems that isn’t the case that attracts attention.

1.2.2. Affine, nilpotent and other groups. Let R be an integral domain. We

will deal with Mn(R), the ring of matrices under the usual addition and multi-

plication, over R and the corresponding general linear group GLn(R) – elements

multiplicatively invertible. The natural action of GLn(R) on (R)n gives the affine

group (R)n ×sGLn(R).

More generally, if we have a subgroup H ≤ GLn(R), regard its restriction to

(R)n also as an affine group as giving an affine group (R)n×sH. The multiplication

can be represented as matrix multiplication – as is done in Ch. 1 §1.2 –

(
h1 0
r1 1

)(
h2 0
r2 1

)
=
(

h1h2 0
r1∗h2+r2 1

)
.

Nilpotent: A profinite group G is nilpotent if it is a product of its `-Sylows. Each

such `-Sylow is a quotient of the free pro-` group of rank (minimal number of

generators) the same as the `-Sylow.

1.3. Linear algebra basics. Denote the n× n identity matrix by In. There

are various vector spaces, V , over K on which we may regard Λ as acting, either

on the right or left usually given by matrix multiplication. Most typically, by its

action on Mn,m(K̄) (resp. Mm,n) of matrices with n rows (resp. m rows) and m

(resp. n) columns by multiplication on the left (resp. right).

We refer to V as a (left) module. Proper Λ modules are irreducible (also simple)

modules if they have no proper submodules. Any such V is therefore generated –

as a Λ module – by a single element, say vvv ∈ V , denoted Λ〈vvv〉. This module is

irreducible if and only if the (annihilator) ideal Anvvv = {λ ∈ Λ | λvvv = 0} is a

maximal left ideal.

Our archetype is the endomorphism ring (Def. 1.7) of homomorphisms of V that

commute with a matrix A ∈ Mn(K) acting on the left of vvv ∈ M(n, 1)(K̄) = K̄n.

This gives A(vvv) by dotting the vector vvv into the rows of A. For example for n = 3:

Left Action: A =

1 2 3
4 5 6
7 8 9

 and vvv =

 1
−1
2

 gives A(vvv) =

 5
11
17

 .

If we had chosen the right action of A on vvv ∈M(1, 3) the result would be

(vvv)A =
(
11 13 15

)
akin to the above for vvv =

(
1 −1 2

)
.
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As a preliminary algebra we take Λ0 = Λ0
A

def
= K[A] (acting on the left). Then the

Λ0 module generated by vvv is

{P (A)(vvv) | P ∈ K[x]} or the span of {Ak(vvv) | 0 ≤ k ≤ n−1}.2

The vector space dimension of any such Λ is a submodule of the finite dimen-

sional space Mn(K)which has finite dimension. Each ideal in Λ is also a vector

space. Therefore any chain of descending ideals is bounded by the dimension of Λ.

This gives Lem. 1.3 under what will be our basic assumptions:

(6.2)
Λ is a Noetherian and Artinian ring;

that is also associative and has an identity.

Lemma 1.3. For any proper subalgebra Λ of Mn(K), and any finite dimensional

module V , V has a (proper) minimal, and so simple, submodule. In particular, any

left (or right) ideal I of Λ, contains a minimal left (or right) ideal I∗.

Jordan canonical form as a guide: For the following discussion on Jordan canon-

ical form assume K = K̄ is algebraically closed. Recall: an eigenvector of A is a

vector, vvv 6= 000, that generates a 1-dimensional A-invariant subspace of V = Kn:

A(vvv) = λvvv, with eigenvalue λ (possibly 0). Eigenvalues those values λ ∈ K for

which Nλ = A− λIn is not invertible.

Equivalently, Nλ has a nontrivial null space, an eigenvector with eigenvalue 0.

The last line of Lem. 1.4 continues into our discussion of an example giving

Jordan canonical form as an explicit conjugate DAD−1,

Lemma 1.4. If Nλ is not invertible, then there is an integer 0 < t ≤ n with

these properties:

(6.3a) Vλ
def
= ker(N t

λ) is a nontrivial invariant subspace;

(6.3b) Nλ acts wthout kernel on Rλ the range of N t
λ; and

(6.3c) V is a direct sum of Vλ and Rλ.

Inductively, A acting on V is a direct sum of the Nλ modules running over

all A eigenvalues. Then, each Vλ is a direct sum of indecomposable K[A] modules,

Vλ,1, . . . , Vλ,s. If Vλ,k has dimension tk, it has a basis {vvv0, . . . vvvtk−1} for which the

irreducible modules for the action of A on Vλ,k are in this series:

(6.4) 〈vvv0〉 < 〈vvv0, vvv1〉 < · · · < 〈vvv0, . . . vvvtk−1〉.

In particular, each Vλ,k contains precisely one eigenspace.

This gives a complete accounting of the irreducible and indecomposable invariant

module constituents for the action of Λ0
A = K[A] on Kn.

2Since A = λ is a zero of its degree n characteristic polynomial det(A− λIn).
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Proof. Since Nλ is not invertible, its range, an invariant subspace for Nλ, has

dimension less than n, and its kernel is nontrivial. By induction, there is a minimal

integer t ≤ n so that N t+1
λ has exactly the same range as N t

λ, and this defines Vλ

in the statement of the lemma as the set of vectors killed by some power of Nλ.

This gives an algorithm for finding the eigenvalues of A on Vλ by corresponding

to vvv ∈ Vλ the minimal integer k with Nk
λ (vvv) = 000. Then, Nk−1

λ (vvv) is an eigenvector

of Nλ. A basis of Rλ and a basis of Vλ together have cardinality n. So it suffices to

show Rλ∩Vλ = {000}. But the overlap would be a nonzero vector vvv killed by N t
λ and

in an invariant space with no vector is killed by Nλ. Thus, there is an integer u for

which Nu−1
λ (vvv) ∈ Rλ is nonzero, fwith Nu−1

λ (vvv) = 000; a contradiction.

The first sentence of the second paragraph results from an induction by restrict-

ing A to Rλ. Cramer’s rule gives the eigevalues of A as the zeros of det(A− λIn).3

The second sentence is most relevant for the sequel on Loewy display. Start by

considering the eigenvectors for powers of N t−1
λ on Vλ, starting with a basis of

eigenvectors of N t−1
λ . Each such eigenvector, say vvv, then produces a basis of an

indecomposable subspace for A on Vλ by considering a chain of antecedents:

(6.5)
Bvvv = {vvv = vvv0, vvv1, . . . , vvvt−1}, so that

Nλ(vvvt−1) = vvvt−2, Nλ(vvvt−2) = vvvt−3, . . . , Nλ(vvv1) = vvv0.

We see that the vectors in Bvvv are linearly independent by taking a supposed

linear dependence relation of the form vvvk + ak−1vvvk−1 + · · · + a0vvv0 = 000 with the

starting term indexed by k ≤ n as small as possible. But there must be at least one

au 6= 0, u ≤ k−1. Apply Nλ to this expression to get a contradition.

If this gives a basis for Vλ we are done. If not, take another basis element from

the eigenvectors of N t−1
λ , and repeat the construction of a new set of basis vectors

for another indecomposable module. Then, juxtapose the basis of this new module

with the set Bvvv. When you are done with those go to a basis of eigenvectors of

N t−2
λ , etc. We do that explicitly for a particular set of A s in Lem. 1.6 below. That

shows the result as blocks along diagonal of a matrix similar to A from which the

invariant indecomposables and irreducibles appear. �

The relevant equivalence on matrices is Def. 1.5.

Definition 1.5. Two elements A,A′ ∈Mn(K) are similar (denoted A ∼ A′) if

there is an element D ∈ GLn(K) such that DAD−1 = A′. Equivalently, A′ is the

matrix of A given by changing the standard basis eee1, . . . , eeen to the columns of D.

The minimal value t = tnil given in the statement of Lem. 1.4 is the nilpotency

of Nλ. The matrix A has as its ith column A(eeei), with eeei with all entries 0, except

the ith, which is 1. The essential case is to find a basis, B = vvv1, . . . , vvvn, of V for

3There are more elementary approaches, using elementary row operations (say, [Axl15, §8.D];

I would have preferred “. . . done well.”) Yet, Cramer’s rule is so elegant, I hate to leave it out.
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which A is canonical with expressed in terms of B (see the example in the proof

of Lem. 1.6), when the only eigenvalues of Nλ are 0. Here is an example of the

canonical form when n = 9 where N ′λ = DNλD
−1 or A′ = DAD−1:

(6.6) N ′λ =



0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


and A′ = λIn +N ′λ

This is a case where knil = 3. It is easy to turn the proof of Lem. 1.6 – whose

notation we use below – into a proof of of Jordan canonical form for any matrix

over the algebraic closure of any perfect field. It also has a reminder of what is

meant by computing the matrix relative to a basis. Suppose A∗ : R9 → R9 has a

unique eigenvalue λ, and N∗λ = A∗ − λI9.

Lemma 1.6. Assume also: knil = 3; the range, R2, of (N∗λ)2 has dimension 2;

and the range, R1, of N∗λ has dimension 5. Conclusion: A∗ is A′ in (6.6) relative

to some basis B∗ = vvv∗1, . . . , vvv
∗
9.

Proof. Take a basis www1,www2 of R2. For each, form vvvi,2, vvvi,1, vvvi,0 = wwwi, i = 1, 2,

so that Nλ(vvvi,2) = vvvi,1, Nλ(vvvi,1) = vvvi,0, i = 1, 2. Then, this list,

B1 = {vvv1,0, vvv1,1, vvv1,2, vvv2,0, vvv2,1, vvv2,1}, consists of linearly independent vectors.4

So, in the range of N∗λ , of dimension 5, there is another vector – which we take

as vvv3,0 – that must go to 000 under N∗λ . It too has an N∗λ preimage vvv3,1. Adjoining

B2 = {vvv3,0, vvv3,1} to B1 gives 8 linearly independent vectors in V .

There must be one more vector, vvv4,0, that goes to 000 under N∗λ ,. We have a basis

for V by adjoining vvv4,0 to B1 ∪ B2. Just rename them, as vvv∗, . . . , vvv
∗
9 in this order:

vvv1,0, vvv1,1, vvv1,2, vvv2,0, vvv2,1, vvv2,2, vvv3,0, vvv3,1, vvv4,0.

Indeed, compute A∗ relative to this basis by applying N∗λ to each vector in

order. Then rewrite the result as a linear combination of the vvv∗ s. For example,

N∗(vvv1,0) = 000, N∗(vvv1,1) = vvv1,0, N
∗(vvv1,2) = vvv1,1. This gives us the 3× 3 block in the

upper left corner of N ′λ. Etc. �

Matrix A′ in Lem. 1.6 has 4 blocks along its diagonal. Each corresponds to an

invariant, indecomposable subspace, for A∗ acting on V ; each such subspace having

precisely one eigenspace. For example, V1 = 〈vvv1,0, vvv1,1, vvv1,2〉 is invariant under A∗,

4The Lem. 1.4 proof shows the 1st 3 and 2nd 3 are linearly independent. Write a minimal

relation among them; the 1st 3 on one side, the last 3 on the other; apply Nλ for a contradiction.
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for which 〈vvv1,0〉 is its only eigenspace. There is no direct sum decomposition of

V1 = V1,0 into proper invariant subspaces.5 Similarly, A∗ has V2 = 〈vvv2,0, vvv2,1, vvv2,1〉,
V3 = 〈vvv3,0, vvv3,1〉 and V4 = 〈vvv4,0〉 as indecomposable invariant subspaces. This is the

complete list of invariant indecomposable subspaces for A∗ action on K9.

Algebra form of submodules of M : We now use Jordan canonical form as a guide

to general definitions about an algebra (satisfying (6.2)) acting on a module M by

first extending Λ0
A to a larger algebra.

Definition 1.7. For an algebra Λ acting on a left (or right) Λ module M write

EndΛ(M) = HomΛ(M,M) for the homomorphisms from M to M that commute

with the action of Λ. This, too, is an associative algebra.

Write ΛA
def
= EndK̄[A](M) for the K̄ algebra of homomorphisms of M that

commute with the action of Λ0
A. Assume M is finite dimensional Λ module and

write M as a direct sum, ⊕ui=1Mi, of Λ invariant modules.

Lem. 1.8 is immediate from the definitions.

Lemma 1.8. If Ei is the homomorphism of M that is the identity on Mi, and

0 on Mj, j 6= i, then Ei, In−Ei ∈ EndΛ0
A

(M), In =
∑u
i=1Ei and:

(6.7) E2
i = Ei, (In−Ei)2 = In−Ei, and for i 6= j, Ei · Ej = 000n.

Further, if Mi is indecomposable, then Ei cannot be decomposed as E′i + E′′i with

E′i, E
′′
i satisfying (6.7).

Definition 1.9. Suppose an algebra Λ has elements E1, . . . , Eu satisfying the

properties of (6.7). We call them orthogonal idempotents. Refer to them as primitive

if the modules Mi are indecomposable.6

Consider matrices that centralize an n× n matrix En,j whose entries are all 0,

except those – all 1 s – along the j+1th diagonal given by the entries

{(k, j+k) | 1 ≤ k ≤ n−j}, 0 ≤ j ≤ n−1.

For example, N ′λ in (6.6) has E3,1, E3,1, E2,1, E1,1 as blocks along its diagonal.

Lem. 1.10 considers CenEn,1 , the matrices that centralize En,1 .

Lemma 1.10. In the notation above, the following hold.

(6.8a) CenEn,1 = {
∑n−1
j=0 ajEn,j | aj ∈ C}; and for 1 ≤ s ≤ n,

(6.8b) 〈eee1, . . . , eees〉 is the unique En,1 invariant subspace of dimension s.

5Hint: If there were, restriction of A∗ to each would have its own eigenspace, contrary to A∗

having just one eigenspace on V1.
6We can get away with the basics, say, from [Be91, p. 7–8], but future projects following the

lead of this book will require further education.
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More generally, suppose N has 0 s everywhere, except it has Jordan form blocks

consisting of the matrices En1,1, . . . , Enu,1 along its diagonal. Then, the centralizer

CN contains CenEn1,1
× · · · × CenEnu,1 .7

In particular, CenN contains the matrices Enj ,0 = Ej that are 0 everywhere,

except at the position of the jth block, it is Inj , with

(6.9) E1, . . . , Eu satisfying the conditions of Lem. 1.8.

Finally, replace N by A ∈Mn; with 0 s everywhere, except – a kin to N – blocks

λjEj + Enj ,1, along the diagonal. Then, the Ej s are in CenA, j = 1, . . . , u.

Proof. Use that Emn,1 = En,1+m−1, 1 ≤ m ≤ n−1. Claim, the terms to the

left (and below) the main diagonal of an A ∈ CenEn,1 are all zeros. For example,

look at the (n−j, 1) term of AEn,1 = En,1A, 1 ≤ j ≤ n−1: From the left side it is

0; from the right it is an−j+1,1. The first column entries of A below the first are 0.

Similarly, dotting the kth column of En,1 (resp. A) into the n−jth row of A

(resp. En,1) gives equality of the (n−j, k) terms as

an−j,k−1 = an−j+1,k, 0 ≤ j ≤ n−k, and proceed inductively.

2nd claim: A has all terms along the kth diagonal equal. For example, look at

the term (j, j+1) of both sides of AEn,1 = En,1A. On the left is aj,j and on the

right aj+1,j+1, 1 ≤ j ≤ n−1. So all the terms along the (1st) diagonal are equal.

Similarly, dotting the j+kth column of En,1 (resp. A) into the jth row of A

(resp. En,1) gives the (j, j+k) term equality as

aj,j+k−1 = aj+1,j+k for 2 ≤ j+1 ≤ n, 1 ≤ k ≤ n−j.

Consider the properties (6.8). If xxx = (x1, . . . , xn) is an eigenvector (so nonzero)

of En,1, since En,2(xxx) = (x2, x3, . . . , xn, 0), there is a value λ such that λxi = xi+1,

i = 1, . . . , n−1. Conclude, λ = 0, and x1 is the only nonzero entry. That shows

(6.8a). Further, in imitation of the example of degree 9, (6.6), En,1 maps eees to

eees−1, and Vs generates by {Ejn,1(eees), j = 1, . . . , s} is the invariant dimension s

subspace naturally associated to En,1.

The last line of the lemma is essentially already in Lem. 1.8. �

Corollary 1.11. In the notation of Lem. 1.10, with ΛA = EndK̄[A](M), each

maximal submodule of M is of the form E′M for some element E′ ∈ ΛA. Therefore

we can write every submodule of M in such a form.

Proof. If we write M as a direct sum of indecomposable modules, ⊕ui=1Mi,

then the maximal submodules are of the form

M1 ⊕ · · · ⊕Mi−1 ⊕M ′ ⊕Mi+1 ⊕ · · · ⊕Mu with M ′ the maximal submodule of Mi.

7If, for example, u = 2 and n1 = n2, the centralizer of N is larger, for it also contains the

matrix that switches the last n1 columns with the first n1 columns. The whole centralizer of N is

now clear in Lem. 1.10 from this principle.
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In this case take

E′ = E1 ⊕ · · · ⊕ Ei−1 ⊕ Eni,1 ⊕ Ei+1 ⊕ · · · ⊕ Eu.

We know every submodule of M explicitly, and can continue inductively in this

style in the general case. �

1.3.1. Loewy layers of a Λ module. This section introduces Loewy displays of

the simple modules that compose general modular representations. The opening

section of [Be91] treats this as elementary material, run through quickly with

few details. We have structural properties in §1.5.4 and examples in §1.6 sufficient

to avoid having to characterize them.8 This extension is more abstract, for finite

dimensional modules M over an algebra Λ satisfying (6.2).

Definition 1.12. The socle, Soc(M)
def
= Soc1(M) (Soc0(M) = {0}), of M

is generated by all irreducible submodules of M . The Socle layers are defined by

successive application of the Soc operator to a previous socle quotient:

Soc2(M) = Soc(M/Soc1(M)),Soc3(M) = Soc(M/Soc2(M)), . . .

Then, M is completely reducible if M = Soc(M).

Definition 1.13. The radical, Rad(M)
def
= Rad1(M) of M is the intersection of

all maximal submodules of M . Radicals are defined by successive application of the

Rad operator: Rad0(M) = M , Rad2(M) = Rad(Rad1(M)), . . . . Successive radical

quotients define the Loewy series:

Rad0(M)/Rad1(M) the head,Rad1(M)/Rad2(M), . . . .

In displaying the Loewy series for group rings K[G] we put the head to the far

right, the rest of the layers to the left of it (as in §1.6).

Example 1.14 (Lem. 1.6 Socle series and Loewy series). For a matrix A acting

on Kn and having precisely one eigenvalue, say λ, the socle of K[A] is the direct sum

of the eigenspaces of A. That is, one for each block along the diagonal of its Jordan

canonical form. That means for the matrix A′ of (6.6), its socle has dimension 4,

generated by the eigenspaces 〈vvvj,0〉, j = 1, 2, 3, 4.

Here is a prescription for the K[A] maximal submodules. They are given by

considering a block Ai, running from the ri to the ri+1−1 row in the canonical form.

Then, its corresponding submodule is Mi spanned by Bi = {eeeri , . . . , eeeri+np1−1}. Its

submodules form a uniserial series.9 Therefore a maximal submodule corresponding

to it is given by removing eeeri+np1−1 from the standard basis.

8That anyway, would be beyond our expertise.
9In (6.6), the module corresponding to the 2nd block is spanned by B2 = {eee4, eee5, eee6}, and its

other two invariant submodules, respectively by {eee5, eee6} and {eee6}.
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Conclude: Rad(A) of K[A] is the subspace generated by standard basis vectors,

with the vectors {eeeri−1 | i running over the blocks of A} removed. So, in (6.6), the

images of {vvv1,3, vvv2,3, vvv3,1, vvv4,0} generate the 1st Loewy layer of K[A′]. 4

The Jacobson radical:

For finitely generated modules over a Noetherian Λ, there are (maximal) com-

position series of submodules of a Λ module M : A chain

{0} < M1 < · · · < Mt = M

of submodules (composition factors or constituents) with no possible further re-

finements. The Jordan-Hölder theorem [Be91, Thm. 1.1.4] says that any two such

maximal chains have the same lengths, and the (simple) quotients Mi/Mi+1 (con-

stituents) are uniquely defined up to reordering.

For M a left Λ module, ϕλ : m→ λm,m ∈M is a module homomorphism. The

annihilator, Ann(M), of M is {λ ∈ Λ | ϕλ is 0}: a 2-sided ideal.

Call a module M semisimple or completely reducible if it is the direct sum

of irreducible (or simple) Λ modules. A module M is semisimple if and only its

component series is a direct sum ⊕ti=1Mi with the Mi s simple.

Then, among the maximal submodules of M are the sums Nj = ⊕i,i 6=jMi. So,

∩tj=1Nj = 0, and Rad(M) = 0. Conversely, if Rad(M) = 0, consider any collection

{Ni}i∈I of maximal submodules, and the sum M∗I = ⊕i∈IM/Ni. There is a natural

map, ψI : M → M∗I , with ker(ψI) = ∩i∈INi. From DCC on submodules, there is

a finite subset I such that ker(ψI) = Rad(M). For any chain of such I s, select I

minimal so that this holds

Reminder: If I is a left ideal then the Λ module Λ/I is a (natural) ring if and

only if I is a 2-sided ideal. Define JL(Λ) (resp. JR(Λ)) to be the intersection of

maximal left (resp. right) ideals of Λ). The following treatment benefitted from

[Ro02, p. 544–5, p. 547–8].

Lemma 1.15. These statements are equivalent to x ∈ JL(Λ).

(6.10a) The elements 1− Λx
def
= {1− λx | λ ∈ Λ} each have a left inverse.

(6.10b) x · Λ/I = {000} for every maximal left ideal I.

From (6.10b), JL(Λ) is the intersection of Ann(Λ/I) running over maximal left

ideals I. So, it is a 2-sided ideal. Further:

(6.11a) JL of the ring Λ/JL(Λ) = Λ̄ is trivial; and

(6.11b) for any finitely generated Λ module M , M/JL(Λ)M is completely re-

ducible. Equivalently, JL(Λ)M = Rad(M).
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Proof. A module M is irreducible if and only if any nonzero element in M

igenerates it as a Λ module. Also, the two sided ideal Ann(M) is maximal if and

only if every nonzero element of Λ/Ann(M) is invertible: It is a division algebra.

Consider x ∈ JL(Λ), λ ∈ Λ for which 1 − λx has no left inverse, Then some

maximal left ideal I contains 1− λx. So, 1− λx+ λx = 1 ∈ I, contrary to I being

a proper ideal: (6.10a) holds.

Now we show (6.10a) implies (6.10b). Consider a maximal left ideal I, and

m̄ ∈ Λ/I for which xm̄ 6= 000. Since Λ/I is simple, Λxm̄ = Λ/I. There must be λ′ ∈ Λ

with λ′xm̄ = m̄. That means (1−λ′x) has no left inverse contrary to (6.10a).

Expression (6.11a) follows from JL(Λ/JL(Λ)) = JL(Λ)/JL(Λ) = {1}.10

Another way to write (6.11a) is to say, that Λ as a left Λ module – say, denoted

ΛΛ – is completely reducible. By choosing generators of M , we can write M as a

quotient of a direct sum of copies of Λ. That impliesM is also completely irreducible,

concluding the lemma. �

Lem. 1.15 equally holds for defining JR(Λ) using maximal right ideals. That

uses right units in place of (6.10a). Now use the collection of 2-sided units, U in Λ:

{u ∈ Λ | ∃u′, u′′ ∈ Λ, uu′ = 1 = u′′u}.11

Proposition 1.16. The following equality gives the symmetric version of the

Jacobson radical, J(Λ):

J ′
def
= {x ∈ Λ | 1 + ΛxΛ consists of 2-sides units} = JL(Λ) = JR(Λ).

For any finitely generated module M , J(Λ)M = Rad(M).

Proof. From (6.10a), J ′ ⊂ JL(Λ).

Consider x ∈ JL(Λ), a 2-sided ideal, so xΛ ⊂ JL(Λ), and any 1 − λ′xλ has a

left inverse u: u(1 − λ′xλ) = 1. This shows u has a right inverse. It also has the

form 1 + v with v ∈ JL(Λ), so it has a left inverse. As already noted, this makes u

a 2-sided unit and 1− λ′xλ ∈ J ′(Λ). The same result holds for JR(Λ).

With the last line following from Lem. 1.15 and the equality of J(Λ) and JL(Λ),

conclude the proof of the proposition. �

Central idempotents and blocks: Recall Def. 1.9: primitive, orthogonal idempo-

tents. There is a 1-1 association between primitive orthogonal decompositions

1 =

t∑
u=1

Eu and direct sum decompositions,

t∑
u=1

Λu

10[Ro02, p. 320] has this for I = JL(Λ) of a correspondence principle for rings. It states this

for Λ commutative, a one-one correspondence for ideals between I and Λ and quotients of these
by I. It should be between two-sided ideals in this range and the quotients.

11So, u′(uu′′) = (u′u)u′′ = u′ = u′′ from associativity of multiplication.



1. GROUP, GROUP COVERS AND HOMOLOGICAL ALGEBRA 187

into indecomposable modules of the (left) regular representation of Λ: EiΛ = Λi

[Be91, p. 11]. Even more useful is [Be91, p. 14].

Lemma 1.17. If in addition to the above, the idempotents are central, then the

decomposition is into 2-sided ideals. This decomposition – up to order – is unique.12

Proof. Because the idempotents are central, the ideals EiΛ are 2-sided. If

1 =
∑t′

u=1E
′
u is another such decomposition. Then, if EuE

′
u′ is not 0, then it is

another central idempotent. Thus, Eu = EuE
′
1 + · · · + EuE

′
t′ , and therefore, from

primitivity, Eu = EuE
′
u′ = E′u′ , for a unique u′. �

The decomposition above is often written Λ =
∑t
u=1Bu with the Bu s called

the blocks of Λ. If a Λ module M is indecomposable, then M =
∑t
u=1EuM and

for a unique u, EuM = M : M belongs to the uth block. The principal block is the

block of the trivial module 111G. The idea is general. We apply it generally to any

indecomposable module M of a Noetherian algebra Λ over a field K or Z or its

p-adic completion.

Corollary 1.18. All simple constituents in any indecomposable module belong

to the same block.

This applies to any projective indecomposable. For Λ = Z/`[G], the simple mod-

ules of the characteristic module 1
`MG all belong to the principal block.

Proof. Suppose E is a primitive central idempotent that corresponds to block

B, and M is indecomposable. Assume M ′ is a simple constituent of M given as a

submodule of M/M∗ for some submodule of M∗ of M . Then, EM∗ = M∗ inducing

EM/M∗ = M/M∗, and E acts as the identify on M ′.

That completes the first sentence. Now consider Λ = Z/`[G], and the character-

istic module 1
`MG. From Chp. 2 Prop. 2.16, 1

`MG is an indecomposable Λ module

each of whose constituents can be described as a constituent formed from a length

two chain: from the projective indecomposable P111G , then to a projective indecom-

posable PM where M is a constituent at the head of the kernel of P111G → 111G. The

first step implies M is in the principal block, and the corollary now follows from

the first sentence applied to PM . �

Relating the Loewy layers:

Remark 1.19. Given an idempotent E of Λ then EΛE is clearly an algebra

under multiplication. So, are both EndΛ(ΛE) and EndΛ(EΛ)) (resp. regarding ΛE,

EΛ as a left, right Λ module). The latter (resp. former) is isomorphic (resp. isomor-

phic with the opposed multiplication) to EΛE. Here is the argument for a natural

12ΛA in Lem. 1.10, for A ∈ Mn(K̄), has only central idempotents.
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isomorphism ψ : EΛE → EndΛ(ΛE) for the opposed multiplication statement: For

EλE ∈ EΛE, and λ′E ∈ ΛE,

ψ(EλE)(λ′E) 7→ λ′E(EλE) = (λ′Eλ)E ∈ ΛE.

The left Λ action commutes with this map as the action of EλE is on the right; it

is the opposed multiplication because ϕ(Eλ2E)ϕ(Eλ1E) = ϕ(Eλ1λ2E).

1.4. Homological reminders. The short [Br82, Ch. 1 §0] contains many

definitions. We will try to be expedient in imitating it by concentrating on what we

require for comfort with cohomology of R[G] modules in computing, say, H2(G,M)

or ExtrG(M,N) where R = Z or Z/` or closely related.

As a guide, consider these general comments. In homological algebra, group

cohomology, homotopy theory, etc. there are two different objects that get conjoined

in treatments. These are sequences of objects – chain complex – in some category,

C def
= · · ·Ci+1

di+1−→→ Ci
di−→· · · ,

ostensibly infinite in both directions but usually 0 from some point on to the right,

with di+1 ◦ di = 0, i ≥ 0. Notationally, we say ddd = {di}i∈Z has square-zero dif-

ferential: ddd ◦ ddd = 000. The expectation is that the construction of such sequences is

categorical. The reason d’ etre for them is that, as in Def. 1.7 and Def. 1.8, the

quotient of the kernel of di by the image of di+1, Hi(C) will meanfully interpret and

compute properties of the object(s) M (and N) which gave rise to the sequence.

[Br82] takes an historical approach, starting from simplicial complexes, based

on topological CW complexes, and the fundamental group π1(X) of X, a topological

space. From that defines the group cohomology of an arbitrary discrete group (from

which we can go to a profinite group easily), as given by forming a Z[G] projective

resolution of Z as a trivial G module. The particular projective resolution is formed

from the CW structure (with a G action on it) with Ci the chains of dimension i,

and a map C0 → Z by
∑
k uipi 7→

∑
i ui where the sum is over a finite set of points.

The last is called the augmentation map . Then, remove the augmentation map to

get a complex whose cohomology is independent of the CW complex structure.

To generalize to group (including finite) homology, with coefficients in a G

module M , the replacement is to take any projective resolution of M , generalizing

the augmentation map. Then prove it doesn’t matter which projective resolution

you take. The reason is that any one complex C′ → M will have a chain map,

fff : C′ → C, of degree 0 (preserving the subscripts) to any other such complex

C →M , preserving the respective maps to M , and commuting with the differentials:

fff ◦ ddd′ = ddd ◦ fff from using projective modules.

Further, the homology groups will be the same [Br82, Ch. I Thm. 7.5]. There are

three specifics to this that lead to general definitions. First: the idea of a homotopy ,
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hhh : C′ → C, hi : C ′i → Ci+1, i ≥ 0 between chain maps kfff , k = 1, 2.

(6.12) hhh ◦ ddd′+ddd ◦ hhh = 1fff − 2fff.

The key in [Br82, Ch. I Thm. 7.5] is that the augmentation preserving chain maps

from two different projective resolutions are unique up to homotopy, and therefore

the automatic map fff ′ : C → C′ from the same argument, will induce fff ◦ fff ′ and

fff ′ ◦fff to both be homotopic to the identity. Clearly, then the homotopy groups are

the same.

If you have an explicit chain complex, then you might be able to explicitly

interpret/calculate the homology. Certainly that is what happens in Def. 1.8 to

interpret H2(G,M) via the bar resolution. The H1 and H2 interpretations should

suffice to indicate what that resolution is in general.

Comments on ExtrG(M,N):

RETURNM Put the right diagram here.

(6.13)

Ej′
degree ` isogeny−−−−−−−−−→ Ej′/C`k+1

mod 〈±1〉
y mod 〈±1〉

y
P1
w

degree ` rational function f−−−−−−−−−−−−−−−−−→ P1
z

Since this seems to general, it might seem that mere extensions are just a

small part of the topic of cohomology groups. Maybe, but maybe not, since actual

computation comes down to explicit cases, and even these (as in Prop. 2.16) entangle

group cohomology and Ext. Therefore we comment on the properties of (3.27).

Also, in the category that interests us most, that of Z/`[G] modules, how unlike

the category of Z modules in having projectives and injectives the same.

Restriction and corestriction: Suppose H ≤ G, a finite group and A is a (left) G

module, compatible with the notation around Def. 1.8. We add to the properties of

Hn(G,A) and Hn(H,A) an action of G induced by conjugation, comparing them

just enough to define the operators resGH and corGH .

At the level of cocycle functions, if Hc ∈ HomZ[H] : Z[G]n → A, we want to act

with g ∈ G by the diagonal action that maps

(g1, . . . , gn) 7→ g ∗ Hc(g−1g1, . . . , g
−1gn).

For g ∈ H, the result is

g(g−1) ∗ Hc(g1, . . . , gn) = Hc(g1, . . . , gn).

That is Hc is invariant by g.

More generally, if Hc is the restriction of Gc ∈ HomZ[G] : Z[G]n → A to H, then

the resulting element is invariant by g ∈ G. To generalize the action of g ∈ G, we

can just map elements in (H,A) to (gHg−1, A) by (h, a) 7→ (ghg−2, g ∗a). Call this
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map Cong, and trace through that it gives an isomorphism between Hn(H,A) and

Hn(gHg−1, A). Again, tracing through the action to cohomology, this gives.

Lemma 1.20. If H/G, then Cong, g ∈ G induces an action of G/H on Hn(G,A).

1.4.1. Including ramification. Allowing ramification includes using ramification

groups (stabilizers of the primes defining crucial points). These appeared in class

field theory in the case given by number fields; Riemann’s existence theorem in the

case of compact Riemann surfaces. Those join together in the study of curve covers

over finite fields.

Those cases are were the idea of normalization arose, and normalization guar-

antees a unique Galois closure. This has also worked very well in problems where

you can guarantee that the maps appearing as ϕ : X → Z are finite and X and Z

are both nonsingular. In that case, the map is automatically flat, a Grothendieck

cover, and the fiber dimensions have locally constant degree.

Normal varieties are always nonsingular in codimension 1 (singularity may have

codimension as small as 2). The one problem appears in the normalization in the

function field of the fiber product components, which may actually be singular.

Fiber products of ϕ with itself will be singular if there is ramification, but normal-

ization often removes that.

1.5. Modular representations. Following some literature comments, §1.5.1,

on why modular representations are hard, we exposit on their classical theory, §??,

especially Loewy layers and projectives. Ch. 1 §1.3 started our series of statements

on `-Frattini covers (of finite groups), and their relation to nilpotent groups. §1.5.3

describes when our characteristic `-Frattini covers of G are truly characteristic in

the sense of being preserved by automophisms that might not come from their

actual construction.

Finally, §1.5.4 concludes with our best shot at two explicit constructions of `MG:

recognizing it from its homological definition (Prop. 1.27), and taking advantage of

its indecomposability (Prop. 1.28).

1.5.1. Modular representations are hard, but . . . Classifying the mod ` repre-

sentations (up to equivalence) is ”wild” in the formal technical sense, whenever the

`-Sylow is not cyclic and, when ` = 2, not dihedral, semi-dihedral, nor generalized

quaternion. [BoDr77] and [Ri75].

The technical sense of wild used here implies that a classification of the mod `

representations of any one such group would provide a classification of the mod `

representations of any finitely generated algebra over F`. Hence such problems are

often referred to as hopeless. We resist thinking this on the basis of two aspects

relevant to their appearance in our considerations.
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Approach 1: As characteristic modules for `-perfect groups: Our seed group

G, which we fix here, is either `-perfect, or when we must go beyond that case,

we fold under the `-Frattini covers that come from the Ext-Frattini part of the

`-Frattini cover of G as in §3.3.3. For simplicity, consider just the former case here.

Ch. 1 (1.11) already separates considerations from the characteristic quotients

of the full `-Frattini cover of G from the abelianized extension `G̃ab → G that

define MTs. We also know these facts.

(6.14a) With N` the normalization in G of an `-Sylow P`, extension 1
`G → G

factors through an extension N∗` → G with kernel indGN`(`MN`) (from

Lem. ??) from the extension 1
`N` → N`.

(6.14b)

Look at p. 174 Cor. 1.4 to see if I have the quote of Shapiro’s lemma correctly.

Approach 2: No need for a “perfect” display: There is a great quote by Mumford

in a footnote criticizing the ”hopeless” aspect here:

The classification of [two] non-commuting maps f, g : V → V mod GL(V ) is

sometimes referred to as an impossible problem. It is not clear to me why this is

said. If dimV = n, then for each n, there might be a finite number of explicitly

describable algebraic varieties W
(n)
i whose points are in natural 1-1 correspondence

with suitable strata S
(n)
i in the full set Sn of pairs (f, g) : kn → kn mod GL(n)

[MuFo82, App. C, Ch. 4, footnote p. 167].

2) Over any field L, the theory of finite-dimensional L〈< X,Y >〉-modules (non-

commutative polynomial ring in 2 variables) is undecidable [Ba75] and [KoMa73].

1.5.2. Loewy layers and projective modules. Despite the above we can wend our

way through accessible information about the characteristic Z/`[G] modules, `MG,

by which we define and divine properties of the moduli spaces at the center of this

book. First we consider topics mentioned in (3.27c) and which are necessary to gain

some understanding of what possible modules can arise. The author learned these

from [Be91], which – unlike here – treats the definitions in far greater generality.

(6.15a) Loewy layers: Defining successive maximal quotients of completely re-

ducible modules.

(6.15b) Frobenius duality: Concluding the regular representation of Z/`[G] (which

is automatically projective) is also injective.

(6.15c) A simple quotient determines any projective indecomposable module.

These topics come alive in examples of §1.6.

Comments on (6.15a): Define the radical, Rad(M) = Rad1(M), of a Z/`[G] mod-

ule M to be the intersection of its maximal proper submodules. Then, M/Rad(M)

is the maximal completely reducible quotient of M . This lends itself to an inductive



192 6. HISTORICAL RESOURCES AND PERSPECTIVES

definition, Rad(Radu(M)) = Radu+1(M), and its successive sequence – finite in our

case – of Loewy layer quotients,

(6.16) {Radu−1/Radu(M)}∞u=1 with it convenient to define Rad0(M) = M .

The complication is how these layers fit together. From Prop. 2.16, `MG is

indecomposable. Therefore, significant examples of nontrivial Loewy layers arise

immediately from the case of normal ` sylows in G that aren’t cyclic; and then

from (non-cyclic) simple groups, even when an `-Sylow is cyclic. §1.6 gives explicit

examples, uses G = A5 for ` = 2, 3, 5.

§1.5.4 gives a procedure, often more effective than finding the Loewy display of

`MG, that gives the basic structure needed for properties of the reduced Hurwitz

spaces that are the levels of a MT at the core of this book.

Comments on (6.15b): [Be91, Prop. 1.6.2] is a telegraphic treatment of the equiv-

alence of projective and injective modules in the category of Z/`[G] modules. For

our case it starts with the augmentation map:

λ : Z/`[G]→ Z/` by
∑
g∈G

agg 7→
∑
g∈G

ag,

and the left and right regular representation modules LZ/`[G] and Z/`[G]R. This

gives a linear map that turns out ot be a module homomorphism

ϕλ : LZ/`[G]→ Hom(Z/`[G]R,Z/`)
def
= Z/`[G]∗R :

ϕλ(x) : y ∈ Z/`[G]R 7→ λ(yx).

Lemma 1.21. Define ϕλ as a module homomorphism using, for g ∈ G,

gϕλ(x)(y) 7→ ϕλ(x)(yg) = λ(xgy) = ϕλ(gx)(y).

The equalities are the result of λ(xy) = λ(yx). Further, ϕλ is injective, and since

the range has the same dimension as the image, it is an isomorphism.

Applying the definition of projective to a (finite dimensional) module M shows

that Hom(M,Z/`) = M∗ is also projective. Ditto for injective. For finite dimen-

sional modules dualizing take injectives to projectives, and vice-versa.

Proof. From linearity of λ, to show λ(xy) = λ(yx) it suffices to take y = g′,

g′ ∈ G. In that case
∑
agg
′g clearly has the same coefficients as

∑
aggg

′, just in a

different order.

Apply this symmetry to see the equalities in the formula of the lemma. The rest

of the observations to give (6.15b) are in the statement of the lemma. �

Comments on (6.15c), Projective indecomposables: Denote the algebraic clo-

sure of Z/` = F` by K`. We list ingredients from the theory of modular represen-

tations [A86, Chaps. 1-3]. Brauer’s Theorem (below) on simple G modules forces
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considering, at times, Ġ = K`[G] modules instead of F`[G] = G modules. Transla-

tion between statements about G modules to Ġ modules is usually straightforward.

A -̇over notation for a G module means we’ve tensored with K` to make it a Ġ mod-

ule. In contrast to an indecomposable Ġ module – one without a nontrivial direct

summand – is a simple (or irreducible) Ġ module – one with no proper submodules.

Let H be any subgroup of G. Denote the corresponding subalgebra by Ḣ. For

M a Ġ module, let MH be the corresponding Ḣ module. The dimension of M is its

vector space dimension over K`.

(6.17a) Brauer’s theorem: The collection of Ġ modules has the same cardinality

as G conjugacy classes whose elements have order prime to ` [A86, p. 14].

(6.17b) Indecomposable projectives M correspond to simple Ġ modules via the

map M →M/rad(M) [A86, p. 31].

(6.17c) M is a projective Ġ module if and only if MP` , P` an `-Sylow of G, is a

free K`[P`] module [A86, p. 33 and 66].

Induced modules and Shapiro’s Lemma: For a Z/`[G] module NG, and H ≤ G,

denote the module given by restriction of the G action to Z/`[H] by NG
↓H . Denote

an `-Sylow of G by P`, and its normalizer in G by NG(P`)
def
= N`. Then, consider

the characteristic `-Frattini module (for N`) `M(N`).

It may not be a natural G module. For H ≤ G, consider a Z/`[H] module MH .

Then, the module M↑GH
def
= indGH(MH)

def
= MH ⊗Z/`[H] Z/`[G]

induced from MH is a Z/`[G] module. Define the right action of G akin to how G

acts on right cosets of H in G, say as listed by Hg1, . . . ,Hgr:

For m⊗ gi ∈MH ⊗ gi, if gig = hgj , h ∈ H, then (m⊗ gi)g 7→ (m)h⊗ gj .

[Br82, p. 63] inspired the universal property in Lem. 1.22.

Lemma 1.22. For any Z/`[G] module NG, HomZ/`[G](M
↑G
H , NG) is naturally

isomorphic to HomZ/`[H](MH , N
G
↓H).

Also, in all of this we may replace Z/` by Z`.

Proof. Given a Z/`[H] module homomorphism, µ : MH → NG
↓H , we are forced

to associate to it

µ↑G : M↑GH → NG by m⊗ gi ∈MH ⊗ gi 7→ ((m)µ)gi.

Assuming, for g ∈ G, with gig = hgj , showing this is a Z/`[G] homomorphism

requires checking if (((m)µ)gi)g = (((m)µ)h)gj . That it does, since the action of

h ∈ H commutes with µ. �

Cor. 1.23 applies Lem. 1.22 when H = N`, MH = `MH and NG = `MG.
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Corollary 1.23. With notation as above, there is a Z/`[G] module homomor-

phism of `M
↑G
H into `MG.

From Shapiro’s Lemma: H2(G, `M
↑G
H ) = H2(N`, `MH). If this natural generat-

ing extension is a Frattini cover, then `M
↑G
H identifies with `MG.

Proof. Restrict the characteristic cover 1
`G to N`. The universal `-Frattini

property induces a map 1
`N` → 1

`G that gives a Z/`[N` homomorphism embedding

of `MH → `MG. From Lem. 1.22 that produces a Z/`[G] embedding `M
↑G
H → `MG,

completing the first line of the corollary.

�

Problem 1.24. As in Prob. 1.1 show, with n = (G : H), that regarding G as a

subgroup of H o Sn and the action there of the wreath product on Mn
H , then M↑GH

is the restriction of this action to G.

Remark 1.25. Prob. 1.24 is from [Be91, p. 89]. By replacing Mn by the n-fold

tensor M⊗n, that applies to a construction called tensor induction.

1.5.3. Characteristic subgroups of `G̃. Use the notation of Lem. 1.29

If P is an `-group, then as in Lem. 1.24, its Frattini subgroup is (the closure

of) frP
def
= P `[P, P ] and P → P/frP is a Frattini cover.

Recover a cofinal family of finite quotients of `G̃ through the Frattini kernel of

the natural map 1→ ker0 → `G̃→ G→ 1 as in (1.9).

Terms of KG = {kerk}∞k=0 should reference G unless it is understood. For ex-

ample, they may not be characteristic subgroups of `G̃, as easily seen by example

for P = `F̃t (as in (1.7b)). Still, Lem. 1.26 extends [BFr02, Lem. 3.10].

Lemma 1.26. If ker0 is a characteristic subgroup of `G̃, then so are all terms

of KG. Since the intersection of the `-Sylows of `G̃ is a characteristic subgroup of

`G̃ (containing ker0), ker0 is characteristic if the `-Sylows of G intersect in 〈1G〉,
as when G is simple.

In general, KG is cofinal in the closed subgroups in the profinite topology. In

particular, the automorphisms, Aut( `G̃)G of `G̃ that extend those of G define a

profinite group.

Proof. The first statement follows because ker1 is a characteristic subgroup

of ker0: Every automorphism of `G̃ recognizes `th powers and commutators. Any

automorphism of `G̃ will take ker0 into itself by hypothesis. So it will induce an

automorphism on the characteristic subgroup ker1, making that a characteristic

subgroup of `G̃. Proceed by induction to conclude this holds for all the kerk s.
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As with finite groups, all `-Sylows of `G̃ are conjugate [FrJ86, Prop. 22.9.1]2.

Therefore their intersection is a characteristic subgroup, containing ker0. If the `-

Sylows of G intersect in 〈1〉, then the intersection of the `-Sylows of `G̃ is ker0,

proving it is characteristic.

From (1.7b), ker0 is pro-free, and {keri}∞i=1 is a neighborhood base of the origin

consisting of characteristic subgroups of ker0. Thus, automorphisms of `G̃ that

extend those of G (so mapping ker0 into itself) also act on each of {keri}∞i=1, and

on the quotients k
`G. This means, with the natural notation, Aut( `G̃)G is the

projective limit of the finite groups Aut( k`G)G, concluding the proof. �

1.5.4. Constructing `MG. Ch. 1 Prop. 1.30 gives structural statements about

the Universal Frattini cover of G̃. Ch. 3 Prop. 2.16 gave a description of `Mk,k+1

given k
`G. Prop. 1.27 extends this to k+1

` G given solid information on the following

short exact sequences of k
`G modules with P111 the projective indecomposable for

111 = 111 k
`G

, and P the minimal projective k
`G module covering Ω1(111).

(6.18a) 1→ Ω1(111)→ P111 → 111→ 1.

(6.18b) 1→ Ω2(111)→ P → Ω1(111)→ 1.

Compute boundary maps from the standard exact sequences of cohomology:

H0( k`G,111)
δ0−→H1( k`G,Ω

1(111))
δ1−→H2( k`G,Ω

2(111)).

Denote a vector space generator of 111 by 1111.

Proposition 1.27. The element δ1 ◦ δ0(1111) ∈ H2( k`G,Ω
2(111)) represents the

group extension k+1
` G whose class generates H2( k`G,Ω

2(111)), as in Prop. 2.16.

To be explicit, consider the semi-direct product Ω1(111) ×s k`G. Choose m ∈ P111

lying over 1111. The cocycle g 7→ g(m)−m for g ∈ G represents δ0(1111). This cocycle

defines a splitting ψ : k`G→ Ω1(111)×s k`G by g 7→ (g(m)−m, g). Then, k+1
` G is the

preimage in P ×s k`G of ψ( k`G) in Ω1(111)×s k`G from sequence (6.18a).

Proof. Follow standard computations for boundary maps. For example, check

that ψ defines a homomorphism by computing ψ(g1g2) as

((g1g2)(m)−m, g1g2) = ((g1g2)(m)− g1(m) + g1(m)−m, g1g2) = ψ(g1)ψ(g2).

The essence of identifying k+1
` G is to show that pullback of ψ( k`G), as an

extension of k
`G, has the correct 2-cocycle. Suppose α represents a 1-cocycle. Then,

g 7→ (α(g), g) gives a splitting of k
`G in Ω1(111)×s k`G. For each g ∈ k

`G let ᾱ(g) be

an element of P lying over α(g) ∈ Ω1(111).

The boundary map differentiates the 1-cycle g 7→ α(g) to give

(g1, g2) 7→ g1(ᾱ(g2))− ᾱ(g1g2) + ᾱ(g1).

[Nor62, p. 241] shows this 2-cocycle is the factor system for the associative multi-

plication on the pullback group. �
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§1.6 puts Prop. 1.27 into action with the primes dividing A5, using Prop. 1.28,

an alternate way to trying construct the Loewy decomposition of `MG.

1.5.5. Small `-Frattini quotients of `G̃. Ch. 3 Prop. 2.16 shows that the charac-

teristic module `MG is indecomposable. Prop. 1.27 gives an inductive construction

of all of the groups k
`G. That, however, is dependent on finding two projective

modules, for k
`G, one of them the projective indecomposable for 111 k

`G
.

This is illuminating, precisely clarifying the homological algebra in forming the

characteristic `-Frattini modules going up the universal `-Frattini cover. Still, it

fails in practice to show how to approach these towers. We set our sights on a much

more practical use of MT s, though retaining the idea that it is the moduli spaces

that count the most, and we have some insight on the modular curve case.

The small quotients we have in mind all support our previous topics and con-

jectures. We know some properties of the characteristic module `MG. For example,

it is an indecomposable G module whose irreducible subquotients all belong to the

principle block. In most cases, however, the module is difficult to compute, and only

on general abstract principles – at this time – can we draw conclusions about the

corresponding MT levels.

Rubric for the arithmetic of covers: More naively, assume someone has a group G

of interest to them, and a cover, defined over, say, Q, ϕ : X → P1
z, whose geometric

monodromy group is G. They are particularly interested in the branch cycles, C,

of this cover, and how Hilbert’s irreducibility theorem is producing this group as a

Galois group.13 You suggest one cover at a time is a pain and that you can show

them a serious HIT situation using MTs.

You propose forming extensions of G like that of (6.1) (or (1.11)), and putting

the whole families of covers with similar branch cycles together, akin to forming

the groups k
`Gab

based on Nielsen classes Ni( k`Gab
,C) with (`,NC) = 1.

Induction from an `-Sylow: Here we give another extension construction of MT

objects for (G, `) as used in the constructions above. They can be easier to put in

the context of known modular group results. For our given situation starting with

(G, p) such quotients ψ : H → G will have ker(ψ) a Z`[G] module constructed in a

general way from our previous results.

Proposition 1.28 (` pieces: Part 4). Denote an `-Sylow of G by P`, and its

normalizer in G by NG(P`).

(6.19a) There is an explicit lower bound on rk(ker(ϕ̃)) and rk(ker(`ϕ̃)), with the

latter ≥ 1 + |P |(rk(P )−1).

13We have already given the collections of groups D` with involutions, ` 6= 2, and An with

3-cycles and ` 6 3, of such situations that are in the mathematics literature.
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(6.19b) rk(ker(`ϕ̃)) in (6.19a) is the rank of

`M̃G
def
= ker(`ψ̃G)/[ker(`ψ̃G), ker(`ψ̃G)] as a Z` module.

(6.19c) The rank (6.19b) is the Z/` vector space dimension of `MG.

Proof. Now consider (6.19). Bound any ranks given there by bounding the

corresponding ranks of its `-Frattini constituents. To get a bound on the rank

`MG, apply that ker0 RETURN is an index |P | subgroup of any `-Sylow, P̃ , of

`G̃. Also, from (1.15a), P̃ = `F̃rk(P ). Therefore, from (1.7b), the rank of ker0 is

1 + |P |(rk(P )−1), the same as that of `MG.

Check back on Rem. 3.13 related to how this applies to [GS78]. �

Example 1.29 (P elementary abelian in (1.15a)). 4

Other extensions giving MT s based on

(6.20a)

(6.20b) MT s.

Definition 1.30.

1.6. Characteristic A5 `-Frattini covers. Notice our examples in this sec-

tion, where we do discuss the Loewy displays of the projective indecomposables, is

restricted to the cases at the start of §1.5.1 that are not considered “wild.”

Let Mn(R) be the n × n matrices over an integral domain R. It is valuable to

have an “elementary” model for the key definitions for algebras that work on group

rings over finite fields and related. So §?? reminds of how a slight enhancement of

Jordan canonical form of a matrix A ∈Mn(C) can be such.

1.6.1. The case ` = 5. A 5-Sylow, P5, is Z/5, and the normalizer NP5
in A5 is

a D5 isomorphic to 〈(1 2 3 4 5), (2 3)(4 5)〉. Therefore, intuition might suggest it is –

contrary to Prop. 3.10 – a candidate for the possibility that 5MG has rank 1.

If it did, restricting the characteristic 5-Frattini cover 1
5D5 = D52 to 5MG would

assure a nontrivial action. Therefore it could not be the trivial module. Nor could

the trivial module be a quotient of 5MG. Also, the Loewy display could not have a

quotient with kernel 111A5
since that would give 1

5A5 with a nontrivial center contrary

to Ch. 3 Prop. 2.18. Apply Prop. 1.28 showing that 5MG is indecomposable. Do the

iterated construction from Prop. 2.16. If the projective indecomposable for 111G has

V4 at the head of Ω1(111G), then – in computing Ω2(G), the kernel, 111G would appear

at its head because the projective indecompasable of V4 is the degree 5 permutation

representation of A5, which has 111G as the kernel of its map to V4.

Work in PSL2(Z/5)): We want to check what is the module `M
′
5

def
= indA5

D5
(5MD5),

which has dimension 6. Its irreducible subquotients have dimensions that sum to ≤
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6, and don’t contain 111A5
. The only possibilities for the indecomposable subquotients

are therefore the adjoint representation, or two copies of the adjoint representation,

one on top of the other. We work within the identification of A5 and PSL2(Z/5).

Lemma 1.31. Show how the case ` = 5 applies to PSL2(Z/`) that `MG is not

the adjoint representation.

Proof. First we pick a copy of D5 in SL2(Z/5) = G, by selecting any two of

its distinct involutions. Say

g1 =
(

0 1
−1 0

)
and g2 =

(
1 1
0 1

)(
0 1
−1 0

)(
1 1
0 −1

)
=
( −1 2
−1 1

)
.

We find g′ = g1g2 is
( −1 1

1 −2

)
and (g′)2g′(g′)2 = 2

(
1 1
1 0

)( −1 1
1 −2

)
2
(

1 1
1 0

)
=

I5. Therefore 〈g1, g2〉 = H is a copy of D5 in G. The module 5MD5 now identifies

with the conjugation action of H on its own 5-Sylow P5
def
= 〈g′〉.

Now we investigate `M
′
5, which we write as

⊕6
i=1P5 ⊗ ui with u1, . . . , u6 cosets representatives of H in G.

Consider first the adjoint representation of G, as conjugation on the trace 0

matrices of M(Z/5). Denote these by M0(Z/5).

�

1.6.2. The case ` = 2. As in Ch. 1 Lem. 1.19, denote the pro-` completion of

the profree group F̃t on t generators by `F̃t.

Proposition 1.32. Let H = A4 = K4 ×sZ/3. Then, M(H) identifies with

the Z/2[H] module generated by the six cosets of a Z/2 in A4, modulo the module

generated by the sum of the cosets. Any D5 in A5 has a unique Z/2 lying in A4.

So, the action of A4 on Z/2 cosets extends to an A5 action on cosets of a dihedral

group. Thus, Prop. ?? gives 1
2Ã5 as an extension of A5 by ker0(H).

Proof. Let ψ : `F̃t → P` be a surjective homomorphism, with P` any (finite)

` group. Schreier’s construction (1.7b) gives explicit generators of the kernel of ψ

Apply this with t = 2, ` = 2 and P2 = K4, the Klein 4-group and ker0 = ker(ψ).

Let ᾱ be a generator of Z/3. With u and v generators of 2F̃2 let ᾱ act on 2F̃2 by

mapping (u, v) to (v−1, v−1u).

Use S = {1, u, v−1, u−1v} as coset representatives for ker0 in 2F̃2. Form the set

V of elements in ker0 having the form tus−1 or tvs−1 with s, t ∈ S. Toss from V

those equal to 1. Now consider the images of ᾱ and ᾱ2 on uu = u2 = m1 ∈ V . This

produces v−1v−1 = m2 and u−1vu−1v = m3.

Consider ᾱ on m6 = u(v−1)2u−1. Recall: Modulo ker1 any two elements in ker0

commute. Apply this to get

v−1(u−1v)2v = (v−1u−1v)(u−1)v2 mod ker1 = vu−1vu−1 = m5.
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Apply ᾱ again to get v−1u2v = m4. The action of K4 ×sZ/3 = A4 on the mi s is

the same as the action on the six cosets of an element of order 2.

Denote a commutator of two elements w1, w2 by (w1, w2). Modulo ker1 there are

relations among the mi s: m1m2m3 = (u, v) mod ker1; and m4m5m6 = (u, v)−1

mod ker1. So, the product of the mi s is 1. The proof follows from associating a

Z/2 in A4 with a dihedral in A5 as in the statement of the proposition. �

1.7. Central extensions vs G̃→ G. The case G = PSL2(Z/`) is important,

though somewhat misleading.

At its inception, the formulation of the conjectures on MTs were about the

whole extension, ψ̃ : G̃→ G, and its whole `-Frattini quotients `ψ̃ : G̃` → G, rather

than just about their abelianized versions. The arithmetic list of problems (??)

makes a distinction between them, based on the idea that we eventually consider,

say, a k quotient, G̃`,k of G̃`. Then, we consider the ker ker ker ker ker ker kern

kern kern kern RETURN As usual we understand kerpn kern kern to b e the closed

subgroup of p G with generators from the elements of this set Though Lem. ?? is

quite simple, we differentiate a structural group theory statement, say, about the

ranks of the kernel of, say, from technical group theory in that Still, the pieces of

ψG are technically constructive.

Example 1.33 (A most prestigious example). Ex. 2.9 and 2.11 both engage the

universal central extension of An.

4

Every finite group has a maximal solvable quotient. Form it by considering the

successive commutator subroups,

G ≥ [G,G]
def
= G1,c ≥ [G1,c, G1,c]

def
= G2,c · · · until this sequence stops at Gu,c.

Then, G/Gu,c is the maximal solvable quotient of G.

Similarly, there is a maximal nilpotent quotient, G
niq

, of G:

replace [Gj−1,c, Gj−1,c] = Gj,c by G1,c
def
= G1,n, [G,G1,n]

def
= G2,n · · ·

until this sequence stops at Gt,n. Then, G/Gt,n is Gniq .

2. Braid orbits

You want the components of the Hurwitz spaces, and you know the subsets with

different lift invariants are in different braid orbits. Also, if a collection of generating

conjugacy classes repeat often enough, the braid orbits correspond one-one to lift

invariants. Here are examples that appear in the author’s paper.

Groups they take, some others, and the lift invariant values.
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(6.21a) p. 31: G is the dihedral group, Z/`×s{±1} of order 2`, ` odd, and c is the

conjugacy class of involutions.

(6.21b) also p. 31: G = V` ×sS3, where ` > 3 is a prime, V` is the 2-dimensional

reduced permutation representation of S3, and c is again the conjugacy

class of involutions.

(6.21c) In §12, Cohen-Lenstra Heuristics, they take what they call a generalized

dihedral group A×s{±} with A a finite abelian group of odd order with

−1 acting as -1.

(6.21d) Akin to (6.21b), but much harder: G = V` ×sZ/3, ` 6= 3; c consists of the

two nontrivial conjugacy classes in Z/3, each repeated with the same, d′,

multiplicity: cd′,d′ .

Comments on (6.21a): Prop. 6.0.3 shows how their results have gone beyond

their previous paper in their bound on the Cohen-Lenstra class numbers. See

(????).

I use example (6.21d) in §??.

2.1. Other braid orbit computations. The length of a qi orbit on ggg ∈
Ni(G,C)• with • an equivalence relation is crucial to most explicit calculations of

braid orbits, and so Hurwitz space components. Typically, we expect that to be

2ord(gigi−1). Yet, there is an important exception when it is half that length. That

occurred, for example, in the orbit labeled H+,in,rd in Table 2 for the shift of an

HM cusp. Prop. 2.1 [BFr02, Prop. 2.17] explains that.

The structure constant formula (§??) calculates |S(C′)| using complex repre-

sentations of G. Calculations in §?? compute the length of γ orbits on S(C′)g3 . For

g1, g2 in a group, denote the centralizer of 〈g1, g2〉 by Z(g1, g2).

Let g1g2 = g3, and g2g1 = g′3. Let o(g1, g2) = o (resp. o′(g1, g2) = o′ be the

length of the orbit of γ2 (resp. γ) on (g1, g2). If g1 = g2, then o = o′ = 1.

Proposition 2.1. Assume g1 6= g2. The orbit of γ2 containing (g1, g2) is

(gj3g1g
−j
3 , gj3g2g

−j
3 ), j = 0, . . . , ord(g3)−1. So,

o = ord(g3)/|〈g3〉 ∩ Z(g1, g2)| def
= o(g1, g2).

Then, o′ = 2 · o, unless o is odd, and with x = (g3)(o−1)/2 and y = (g′3)(o−1)/2

(6.22) (so g1y = xg1 and yg2 = g2x), yg2 has order 2 and o′ = o.

Proof. For t an integer,

(g1, g2)γ2t = (gt3g1g
−t
3 , gt3g2g

−t
3 ) and (g1, g2)γ2t+1 = (gt3g1g2g

−1
1 g−t3 , gt3g1g1g

−1
1 g−t3 ).

The minimal t with (g1, g2)γ2t = (g1, g2) is o(g1, g2). Further, the minimal j with

(g1, g2)γj = (g1, g2) divides any other integer with this property. So j|2o(g1, g2) and

if j is odd, j|o(g1, g2).
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From the above, if the orbit of γ does not have length 2o(g1, g2), it has length

o(g1, g2). Use the notation around (6.22). The expressions g1y = xg1 and yg2 = g2x

are tautologies. If o is odd, then (g1, g2)qo2 = x(g1, g2)q2x
−1. Assume this equals

(g1, g2), which is true if and only if xg1 = g2x = yg2. The expression (g1g2)o = 1

and xg1yg2 = 1 are equivalent. Conclude (yg2)2 = 1. So long as the order of yg2

is not 1, this shows (6.22) holds. If, however, yg2 = xg1 = g2x = g1y = 1, then

g1 = g2, contrary to hypothesis.

This reversible argument shows the converse: (g1, g2)qo2 = (g1, g2) follows from

(6.22). This concludes the proof. �

2.2. Covers of higher genus curves. We easily extend the restricted and

general lift invariants from §1 and §2 to consider ramified covers, ϕ : W → Z, of

compact Riemann surfaces, without assuming Z = P1
z. This is brief. Excluding that

the fundamental group of Z is no longer trivial, this is fairly obvious.

With gZ = g, the genus of Z, ramified at points z1, . . . , zr. Go to the Galois

closure ϕ̂ : Ŵ → Z. Denote the automorphism group by Gϕ, and let ψG : R→ G be

a representation cover of G: a central Frattini cover of G whose kernel – contained

in the commutator subgroup in R – is isomorphic to the Schur multiplier of G.

Denote | ker(ϕR)| by MG. We are now in shape to imitate Cor. 2.6.

Suppose we have classical generators ,

(a∗1, b
∗
1, . . . , a

∗
g, b
∗
g, g
∗
1 , . . . , g

∗
n)

def
= Paaa∗,bbb∗,ggg∗ ,

for the fundamental group, π1, of Z \ {z1, . . . , zr}. Then ϕ determines a cover

π1 → G that sends the entries of Paaa∗,bbb∗,ggg∗ to elements of G, which we denote by

Paaa,bbb,ggg. There is a natural product constructed from the entries of Paaa∗,bbb∗,ggg∗ . Denote

a commutator (a∗k)(b∗k)(a∗k)−1((b∗k))−1 by [a∗k, b
∗
k]. Form

Πg
k=1[a∗k, b

∗
k]Πr

i=1g
∗
i , referring to the result as Π(aaa∗, bbb∗, ggg∗).

Since Paaa,bbb,ggg are classical generators, we have a product-one condition: Π(aaa∗, bbb∗, ggg∗) =

1. Thus, so do the corresponding entries of Paaa,bbb,ggg satisfy product-one. As previously,

the gi s define conjugacy classes C1, . . . ,Cr in G for which, as previously, use the

notation NC for the least common multiple of the orders of their elements. Here

are some facts about this.

(6.23a) If (NC,MG) = 1, then (mini-Schur-Zassenhaus), we can lift the entries of

ggg to R retaining the prime to NG condition.

(6.23b) Denote the (6.23a) lifted entries by Pâaa,b̂bb,ĝgg and their product by sR/G(âaa, b̂bb, ĝgg) ∈
ker(R/G).

Directly compute that the value of the commutator [âi, b̂i] won’t depend on

the choice of lifts for ai and bi to the central extension R → G. Therefore the

value of sR/G(âaa, b̂bb, ĝgg) is well defined. Further, the argument of §1.3 shows that it is
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an invariant of the deformation of Z \ z1, . . . , zr. Explanation: The most obvious

meaning of that is, we deform Z in the space of genus g compact surfaces while

continuously deforming the distinct points z1, . . . , zr. While that might look like

it calls for a whole new proof, it seriously does not; you can move the complex

structure leaving the branch points fixed, and you can get the effect of deforming

the branch points by the generalization of braids to a genus geng surface.

Then, the formula for the general lift invariant, should the assumption of (6.23a)

not hold, lies exactly in the quotient of Def. 2.1 as for Z = P1
z.

3. Serre’s OIT

We have put here comments on Serre’s version of his OIT. These are examples

illustrating the concepts we use to generalize it. §3.1 starts with the notion of even-

tually (`-)Frattini and how it is appropriate for what we are calling the weak OIT.

That using MTs does generalize the OIT is in §3.2. This starts with the observa-

tion from [Fr95, §1.A], expanding on [Fr77, §2] that all the standard collections of

modular curves,

X0,`
def
= {X0(`k+1)}∞k=0,X1,`

def
= {X1(`k+1)}∞k=0 and Y`

def
= {Y (`k+1)}∞k=0,

as covers of P1
j , are compactified one-one (and onto) images of the reduced Hurwitz

spaces listed on the left in (1).

3.1. Eventually `-Frattini and Serre’s OIT. The first Prop. 3.2 statement

might well be the most well-known piece from [Se68]. It is the examplar of the `-

Frattini property. We emphasize the eventually `-Frattini property (Ch. 4 Def. 4.2).

§3.1.1 does preliminaries relevant to our whole approach on SL2 vs PSL2. §3.1.2 is

the proof of Prop. 3.2.

3.1.1. SL2 vs PSL2. Consider `ψ
′ : PSL2(Z`) → PSL(Z/`) (or of SL2(Z`) →

SL(Z/`)). Then, ker(`ψ
′) = Ad3(Z`), 2× 2 trace 0 matrices with coefficients in Z`,

is abelian. Though Prop. 3.2 says they are `-Frattini covers for ` > 3, PSL2(Z`) is

far from the universal `-Frattini cover of PSL2(Z/`).

Indeed, it is a proper quotient of `G̃ab
with G = PSL2(Z/`) since the character-

istic module Ad3(Z/`) is a proper quotient of `MG (Rem. 1.31), even though, here,

that proper quotient is indecomposable (even irreducible) as a Z/`[G] module.

The geometric monodromy of modular curves over the j-line, or of our dihedral

group related reduced Hurwitz spaces in §3.2, are directly related to PSL2(Z`)

rather than SL2(Z`). It is the Frattini properties of the geometric monodromy for

general MTs that are the subject of topics such as Ch. 4 Conj. 4.5.

Lemma 3.1. For all `, `α : SL2(Z/`)→ PSL2(Z/`) is a Frattini cover.
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Proof. A proper subgroup G∗ ≤ SL2(Z/`), for which `α restricted to G∗ is

onto, has index 2 in SL2(Z/`). Thus, G∗ contains all the elements of order ` in

SL2(Z/`). In particular it contains

(6.24) A =
(

1 1
0 1

)
and B =

(
1 0
1 1

)
.

The effect of multiplying by Aa (resp. Bb) on any matrix C in SL2(Z/`) is to do

row operations (of determinant 1) on C. If either the upper right corner or lower

left corner of C is nonzero – say the latter – then multiplying on left by Aa for

some a, then Bb for some b, can change C to a matrix with the upper left corner

1, and the lower left corner 0.

Since the resulting C is in SL2(Z/`), it has the form
(

1 b′

0 1

)
= Bb

′
. That still

leaves the case that C has diagonal form Ca′ =
(
a′ 0
0 (a′)−1

)
. The remedy is to

multiply C on the left by B to get a nonzero entry in the lower left corner, and

proceed as above. �

Proposition 3.2. The natural cover SL2(Z/`k+1) → SL2(Z/`) is a Frattini

cover for all k if ` > 3.

For ` = 3 (resp. 2), SL2(Z/`k+1) → SL2(Z/`k0+1), k ≥ k0 where k0 = 1

(resp. 2), is the minimal value for which these are Frattini covers.

That is, for all `, {SL2(Z/`k+1)}∞k=0 is eventually Frattini.

Then, `α̃ : SL2(Z`) → SL2(Z/`) and `α ◦ `α̃ : SL2(Z`) → PSL2(Z/`) are `-

Frattini for ` > 3, and eventually `-Frattini for all `.

In particular, the same statements apply to PSL2(Z`)→ PSL2(Z/`).

3.1.2. Proof of Prop. 3.2. The first sentence is [FrJ86, Cor. 22.13.4]2, form

[Se68, Lem. 3, IV-23] which also has as an exercise that the same statement and

proof applies to SLd(Z/`). Below we augment those exercises for ` = 2 and 3.

The induction for ` > 3: First, we trim the treatment of [FrJ86, Cor. 22.13.4]2. As

in the proof of Lem. 3.1, use A and B from (6.24). Following [FrJ86, p. 532]2, add

C =
(

1 −1
1 −1

)
to give three independent generators of Ad3(Z/`), all with square 0:

every u ∈ Ad3(Z/`) is a sum of square 0 elements.

Our induction hypothesis is that H ≤ SL2(Z/`k+1) → SL2(Z/`k) maps surjec-

tively. We have only to show, for u ∈ Ad3(Z/`), there is h ∈ H of form 1+`ku.

For getting this, the induction assumption gives h0 ∈ H and v ∈ Ad3(Z/`) with

h0 = 1+u`k−1+v`k for some v ∈ Ad3(Z/`). Here are the remaining steps.

(6.25a) Binomially expand h = (h0)` to see it is 1+u`k mod `k+1 unless k = 1

when it is 1+u`+`(u+v`)2(•)+(u+v`)` with • ∈ Z.

(6.25b) If u2 = 0 (and k = 1), the result is 1+`u mod `2, if (u+v`)` ≡ 0 mod `2.

For ` > 3 this is clearly so (see Rem. 3.3).



204 6. HISTORICAL RESOURCES AND PERSPECTIVES

(6.25c) Write u ∈ Ad3(Z/`) as a sum of squares u =
∑t
i=1 ui. From (6.25b) find

hi ∈ H with hi = 1+ui`, so that
∏t
i=1 hi = 1+u` mod `2.

Then, (6.25c) concludes the induction argument, for the first sentence.

The cohomology for ` = 3: For ` = 3, [Se68, IV-28, Exer. 3] asks to show

that SL2(Z/32) → SL2(Z/3) is not Frattini. We say it purely cohomomologically.

Then, µ ∈ H2(SL2(Z/3),Ad3(Z/3)) defines the cohomology class of this extension

([Nor62, p. 241] as in (3.27)).

For any cohomology group, H∗(G,M), with M a Z/`[G] module, restrict to

an `-Sylow P` ≤ G. This gives an isomorphism onto the G invariant elements of

H∗(P`,M) [Br82, III. Prop. 10.4]: see Rem 1.25. So, µ splits if µ` splits.

There is an element, g3, of order 3 in SL2(Z) – PSL2(Z) is well-known to be

freely generated by an element of order 3 and an element of order 2 – and so in

SL2(Z/32). This element of order 3 – given, say, by A =
(

1 −3
1 −2

)
– generates a

3-Sylow. (In Ch. 5 §3 we have reason to use a different element, A∗ =
(

0 −1
1 −1

)
.)

Conclude that µ3 splits. Denote the conjugacy class of A by C3, and note that

its characteristic polynomial is x2 + x+ 1. Any lift of any non-trivial element in

ker(SL2(Z/32)→ SL2(Z/3)) = Ad3(Z/3)

is an element of order 32 in the Frattini cover

ker(SL2(Z/33)→ SL2(Z/3)) = (Z/32)3 → (Z/3)3.

So, the extension SL2(Z/33)→ SL2(Z/32) certainly does not split.

[Se68, IV-28, Exer. 1.b] states that SL2(Z/3k+2)→ SL2(Z/32), k ≥ 0, is Frat-

tini. Take v ∈ ker(SL2(Z/32)→ SL2(Z/3)).

For ṽ ∈ ker(SL2(Z/33) → SL2(Z/3)) lifting v, ṽ3 identifies with v, but in

ker(SL2(Z/33) → SL2(Z/32)). From that stage on, any subgroup mapping onto

SL2(Z/3) has the kernel in it.

The case ` = 2 is similar. Go up a higher level to exploit the free-abelianness

of ker(SL2(Z/2k) → SL2(Z/23)), k ≥ 3. [Se68, IV-28, Exer. 2] produces a D3 in

SL2(Z2) showing that SL2(Z2)→ SL2(Z/2) splits.

Using SL2(Z`)→ PSL2(Z/`) is Frattini: As the composite of two Frattini covers,

`α ◦ `α̃ is also a Frattini cover. Finally, at least for ` > 3, the Frattininess of

PSL2(Z`)→ PSL2(Z/`) is the converse statement: If ψ : H → G is Frattini, and ψ

factors through H1, then both H → H1 and H1 → G are Frattini.

The eventually Frattini comment follows from Rem. 4.7. The last sentence fol-

lows from Rem. 1.27.

Remark 3.3 (Simpleness vs Frattininess for SL2(Z`)). It is well-known that

the values of ` > 3 used in Prop. 3.2 coincide with the values for which PSL2(Z/`)
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is simple, say, [Ar91, p. 296].14 In (6.25b), the condition ` > 3 arises from the

necessity of the equation

(u+v`)` ≡ ((u+v`)2)2(u+v`)`−4 ≡ 0 mod `2,

for u ∈ Ad3(Z/`) whose square is 0. Simpleness is not directly related.

3.2. Modular curves vs MTs. Starting with the case ` is odd, we follow

the braid action in going from

{Ni†
`k+1,1

def
= Ni(D`k+1 ,C24)†,rd}∞k=0 to

{Ni†
`k+1,2

def
= Ni(Z/`k+1)2 ×sZ/2,C24)†,rd}∞k=0

with a † superscript indicating inner or absolute classes.

§3.3.3 has the case ` = 2, the type-2 special case of the general idea of how

we handle the primes ` that aren’t perfect. Again, this is an example of the MT

approach to the OIT, taking on, in this case, the hardest special prime.

µabs,rd
`,1 and µin,rd

`,1 for ` odd: In each case of Table 1, the left system maps to the

right as a system of moduli spaces; each term is given by a one-one map on the

underlying covers of P1
j , whose points represent moduli. This is compatible with the

corresponding maps on their respective stack structures (as in §4.3.2; the reduced

spaces don’t have fine moduli).

Table 1. Dihedral Nielsen classes ===⇒ Modular Curves

{H(D`k+1 ,C24)
abs,rd

}k≥0 → P1
j

µabs,rd
`,1

====⇒ X0,` → P1
j

{H(D`k+1 ,C24)
in,rd
}k≥0 → P1

j
µin,rd
`,1

====⇒ X1,` → P1
j

{H((Z/`k+1)2 ×sZ/2,C24)
in,rd
}k≥0 → P1

j
µin,rd
`,2

====⇒ Y` → P1
j

We attend to µabs,rd
`,1 and µin,rd

`,1 with ` odd here, to ` = 2 in §3.3.3 and to the

more intricate µin,rd
`,2 in Table 1 – Jacobian Nielsen class – in §3.3.

3.2.1. The absolute case. The permutation representation of D`k+1 is given by

the action on 〈
( −1 0

1 0

)
〉 def

= H cosets. A conjugate m−1
( −1 0

1 0

)
m fixes only the

coset Hm. Given the four branch points zzzf , and a set of classical generators (as

in §2.2), a cover f : W → P1
z in the Nielsen class Ni(D`k+1 ,C24)abs gets assigned

particular branch cycles in S`k+1

having cycle type (2) · · · (2)(1): (2) repeats
`k+1−1

2
times.

Its genus, gf is given by

2(`k+1+gf−1) = 4(
`k+1−1

2
), or gf = 0.

14For reasons unknown [Ar91, Thm. 8.3] left out ` = 5, for which we have the well-known

equality PSL2(Z/5) = A5 used, say, in §1.6.
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Similarly, compute the genus of the Galois closure cover gf̂ from

2(2`k+1+gf̂−1) = 4(`k+1) or gf̂ = 1.

Such a cover represents pppf ∈ H(D`,C24)abs. As in, §3.2, we can braid all those

outer automorphisms; both Hurwitz spaces are irreducible.

The Galois closure of f corresponds to a point p̂ppf ∈ H(D`k+1 ,C24)in lying

over pppf . Then, a cover f̂ : Ŵ → P1
z, identified with any component of the fiber

product `k+1-times of f – as constructed in §2.1, represents p̂ppf . A copy of D`k+1

identifies with its automorphism group, up to conjugation byD`k+1 . The normalizer,

NS
`k+1

(D`k|np1) of D`k+1 in S`k+1 , gives a listing of points of H(D`k+1 ,C24)in over

pppf . Here is why.

Pick a component Ŵ (in notation of (1.20)). You find D`k+1 , as a subgroup of

the symmetric group, preserves it. Any other component is given by conjugation of

this one by some g ∈ S`k+1 . As in Lem. 2.1, that component is the same as Ŵ , if and

only if g conjugates the copy of D`k+1 into itself; equivalently, g ∈ NS
`k+1

(D`k+1 .

Further, this component represents an element of Ni(D`k+1 ,C24)in if and only

if g ∈ D`k+1 . That is why the natural map from the inner to the absolute space,

Hin
`k+1 → Habs

`k+1 , over any one component, H′ of the absolute space, consists of a

union of Galois covers H′′ → H′, with the group of this cover identified with a

subgroup of the quotient NS
`k+1

(D`k+1)/D`k+1 : as in Spaces III Prop. 3.5. In this

example, though, there is only one inner component, again according to §3.2.

3.2.2. The traditional X0(`k+1). Denote X0(`k+1) minus its cusps (points over

j =∞) by X0(`k+1)′. A point of it is an equivalence class of an elliptic curve Ej′ ,

together with a subgroup C`k+1 isomorphic to Z/`k+1 on Ej′ . Here j′ will be the

equivalence class modulo PSL2(C) of the collection zzzf . Take Ej′ to be the Picard

group, Pic(W̃f )0, of degree 0 divisor classes on W̃f . Then, D`k+1 acts on Ej′ .

The normalizer, NS`(D`) = Z/`k+1 ×s(Z/`k+1)∗ has the same `-Sylow as does

D`k+1 . Take C`k+1 to be the group generated by translations of the origin induced

by the `-Sylow. Then, H(D`k+1 ,C24)abs → X ′0(`k+1)

(6.26) is given by f : W → P1
z 7→ (Ej′ , C`k+1).

This map factors through the action of PSL2(C) on the Hurwitz space since that

action doesn’t affect the Galois closure cover.

To see this induced map is one-one from H(D`k+1 ,C24)abs,rd to X0(`k+1)′, com-

plete the map to P1
j , from the projective normalization of H(D`k+1 ,C24)abs,rd. Then

use (1.24) for the cover degree. Or, we can reverse

pppf ∈ H(D`,C24)abs,rd 7→ (Ej′ , C`k+1) in (6.26) by forming the diagram
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(6.27)

Ej′
degree ` isogeny−−−−−−−−−→ Ej′/C`k+1

mod 〈±1〉
y mod 〈±1〉

y
P1
w

degree ` rational function f−−−−−−−−−−−−−−−−−→ P1
z

Remark 3.4. Using the degree of the covers over the j-line can also be done

by summing the cusp widths cusps (over j = ∞) as in Thm. 2.13, from (2.31b).

For example: with k = 0, the degree of H(D`,C24) abs,rd → P1
j is `+1: the sum of

the widths of an HM cusp and its shift (resp. ` and 1). In that counting, these are

the q2 orbits on reduced Nielsen classes of

gggHM = (
( −1 0

0 1

)
,
( −1 0

0 1

)
,
( −1 a

0 1

)
,
( −1 a

0 1

)
), and

(gggHM)sh = (
( −1 0

0 1

)
,
( −1 a

0 1

)
,
( −1 a

0 1

)
,
( −1 0

0 1

)
).

One problem, though, for general k, is that the cusp widths are not a well-known

computation for X0(Z/`k+1).

3.2.3. Adjustment from absolute to inner. The adjustment to handle µin,rd
`,1 re-

quires only replacing the subgroup C` on the elliptic curve Ej′ , with a genera-

tor e′ of C` in the classical description of X1(Z/`k+1). Then, the natural map

H(D`,C24)in → X ′1(`) is given by f̂ : Ŵ → P1
z 7→ (Ej′ , e

′).

The equivalence on the right (Ej′ , e
′) ∼ (Ej′ ,−e′) is matched by inner equiva-

lence on the left, conjugation by
( −1 0

0 1

)
. As in (2.31e), the whole inner Nielsen

class is the braid orbit of an HM rep.

Remark 3.5 (Fine moduli to not fine reduced moduli). The center of D`k+1

is trivial, as in Thm. 1.7. So, the inner and absolute D` Hurwitz spaces have fine

moduli. Over z′ ∈ zzzf , there is a unique unramified point wz′ ∈ Wf . The Klein

4-group, Kzzzf < PSL2(C) preserving zzzf , gives an absolute equivalence of f with

itself, as a cover of P1
z. Since Q′′ acts trivially on inner Nielsen classes, each q ∈ Q′′

extends to an equivalence of f̂ with itself. That is, Q′′ acting trivially on Nielsen

classes in §3.2. Those equivalences are transitive on the collection {wz′}z′∈zzzf .

3.3. Modular curves and MTs: Jacobian case.

3.3.1. Jacobian Nielsen class in Serre’s case. We now find the lift invariant is

a replacement for the traditional role of the Weil pairing , following Ch. 4 §4.3 in

considering the braid action on Ni`k+1,2.

` is odd: Consider these 4-tuples

A`k+1
def
= {aaa = (a1, . . . , a4) ∈ (Z/`k+1)4 |

a1−a2+a3+a4 ≡ 0 mod `k+1, 〈ai−aj , 1 ≤ i < j ≤ 4〉 = Z/`k+1}.
Associate to gggaaa ∈ Ni`k+1,1 the element aaa = (a1, . . . , a4) given by

(6.28)
(( −1 a1

0 1

)
,
( −1 a2

0 1

)
,
( −1 a3

0 1

)
,
( −1 a4

0 1

))
as in Ex. 2.7.
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Then, it makes sense to denote elements in Ni`k+1,2 by gggaaa,aaa′ by substituting (ai, a
′
i)

for ai, i = 1, . . . , 4, in (6.28).

The Nielsen class Ni`k+1,1 has one braid orbit (§3.2). The action ofH4 on Ni`k+1,2

extends its action on Ni`k+1,1, to compute braid orbits on Ni`k+1,2 we may choose

any one allowable aaa, and check possibilities for aaa′ that go with it. Start where aaa

corresponds to the shift of an HM rep. aaash = (0, a, a, 0) with a ∈ (Z/`k+1)∗. The

only condition not obviously satisfied is generation.

Lemma 3.6. Substitute gggaaa,aaa′ in gggaaa, or (ai, a
′
i) for ai, 1 ≤ i ≤ 4, to represent a

class in Niin`k+1,2 modulo these conditions:

(6.29a) (a1, a
′
1) = 000 and

∑4
i=2(−1)i(ai, a

′
i) ≡ 000 mod `k+1;

(6.29b) {(ai, a′i) mod ` | 2 ≤ i ≤ 4} aren’t all on a line through 000.

Starting with aaash, the allowable aaa′, up to inner equivalence, have the form

{(0, a′2, a′3, a′3 − a′2)} with a′3−a′2 6≡ 0 mod `.

Proof. For the 1st item of (6.29a), replace the original element by the inner

equivalent representative by conjugating by
(

1 (a1/2,a
′
1/2)

0 1

)
. Since

(
1 −(a1/2,a

′
1/2)

0 1

)( −1 (a,a′)
0 1

)(
1 (a1/2,a

′
1/2)

0 1

)
=
( −1 (a−a1,a′−a′1)

0 1

)
we may assume (a1, a

′
1) = 000. Complete (6.29a) from product-one (1.23c).

Recognize (6.29b) as equivalent to entries of gggaaa,aaa′ generate (Z/`k+1)2 ×sZ/2.

Given that the first entry is now
( −1 0

0 1

)
, this says

〈(ai, a′i), i = 2, 3, 4〉 = (Z/`k+1)2 def
= Ek.

Since Ek is a Frattini cover of E1, this is equivalent to showing that the image

of 〈(ai, a′i), i = 2, 3, 4〉 is all of E1. For this it suffices in the two dimensional space

E1 that the hoped for generators aren’t all on one line (through the origin).

Now consider the allowable aaa′ that go with aaash. Having the 4th entry nonzero

mod ` is necessary and sufficient for the second line condition of (6.29), while the

first line is automatic from its form. �

3.3.2. Values of the lift invariant. Now we show values of the lift invariant

to the small Heisenberg group separate braid orbits on Ni`k+1,2. Indirectly, this

accounts for the constants that come from Q(e2πi/`k+1

) traditionally arising from

the Weil pairing . These now interpret as values of a Nielsen class lift invariant.

There is no lift invariant for the Nielsen classes with D`k+1 and ` odd. Yet,

there is one for G`k+1 = (Z/`k+1)2×sZ/2, k ≥ 0. It comes from the small Heisenberg

group, as in Ch. 5 §3, except the external semidirect product comes from Z/2 rather

than Z/3 (as in Ch. 5).
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So, Ni(H(Z/`)×sZ/2,C24) elements are 4-tuples with entries of form

( −1 M(a,a′,z)
0 1

)
with

{
M(x, y, z)

def
=

1 a z
0 1 a′

0 0 1

 , a, a′, z ∈ Z/`k+1

}
.

Precisely, following Lem. 3.6, aaash = aaa as above,

with aaa′ given by (0, a′2, a
′
3, a
′
3−a′2), with a′3−a′2 6= 0.

Write the action of the Z/2 on M(a, a′, z) as −1 ∗ M(a, a′, z) = M(−a,−a′, z);
trivial action on z comporting with

H(Z/`)×sZ/2→ (Z/`)2 ×sZ/2 is a central extension.

Proposition 3.7. An element
( −1 M(x,x′,z)

0 1

)
in H(Z/`k+1)×sZ/2 has order

2 if and only if z = xx′

2 .

The lift invariant of gggaaash,aaa′ (as above) is
a(a′3−a

′
2)

2 6= 0. It has |(Z/`k+1)∗| values

, running over all elements in Ni`k+1,2. In particular:

(6.30a) all braid orbits are separated by their lift invariant values;

(6.30b) their corresponding inner Hurwitz space components are conjugate by the

action of G(Q(e2πi/`k+1

)/Q);

(6.30c) The normalizer of G`k+1 in S`2 , NS`2 (G`k+1) is GL2(Z/`);

(6.30d) the geometric (resp. arithmetic) monodromy group of any Niin`k+1,2 compo-

nent over P1
j is SL2(Z/`k+1)/〈±1〉 (resp. GL2(Z/`k+1)/〈±1〉).

Proof. An order 2 lift of
( −1 (x,x′)

0 1

)
to H(Z/`k+1)×sZ/2 satisfies

( −1 M(x,x′,z)
0 1

)( −1 M(x,x′,z)
0 1

)
=
(

1 (−1)∗M(x,x′,z)M(x,x′,z)
0 1

)
=
(

1 M(0,0,0)
0 1

)
.

Directly calculate that (−1) ∗M(x, x′, z)M(x, x′, z) has upper right entry 2z−xx′,
or z = xx′

2 as stated in the lemma.

Now compute the lift invariant of gggaaash,aaa′ , by taking the product of the order 2

lifts of its entries to H(Z/`k+1) ×sZ/2. That calculation amounts to checking the

upper right entry of the following product:( −1 M(0,0,0)
0 1

)( −1 M(a,a′2,
aa′2
2 )

0 1

)( −1 M(a,a′3,
aa′3
2 )

0 1

)( −1 M(0,a′3−a
′
2,0

0 1

)
.

Multiply the first two matrices, then and the last two matrices, to get(
1 M(−a,−a′2,

aa′2
2 )

0 1

)(
1 M(a,a′2

aa′3
2 )

0 1

)
.

Conclude the upper right entry of M(a, a′2,
aa′3
2 )M(−a,−a′2,

aa′2
2 ), the lift invari-

ant value, is
a(a′3−a

′
2)

2 6= 0, an element in (Z/`k+1)∗ according to the conditions

of Lem. 3.6. From (3.10a), the lift invariant is a braid invariant, preserved by the

action of H4 on gggaaash,aaa′ .

Regard Vk = (Z/`k+1)2 as both the letters of a permutation representation and

as a subgroup of S(Z/`k+1)2 The automorphisms of Vk are given by GL2(Z/`k+1)
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which we can now regard as a subgroup of the symmetric group. The copy of Z/2

in Vk ×sZ/2 is in its center, generated by minus the identity matrix.

An element of GL2(Z/`k+1) acting by conjugation on Nielsen classes is therefore

determined by what it does to (aaa,aaa′). By the conditions, this is determined by what

it does to the pair (a, a′2), (a, a′3) since that linearly determines what it does to

(0, a′3−a′2). The same holds for any braid q acting on reduced inner Nielsen classes.

Therefore, all braid element actions are given by conjugations by GL2(Z/`k+1).

It remains to braid conjugation by elements of SL2(Z/`) (as in Def. 3.7). To

see that action, there are two calculations figured by what the generators of H4 do

to the 2nd and 3rd entries of gggaaash,aaa′ , after the result has been normalized to have( −1 (0,0)
0 1

)
in the first entry, and product one determining the 4th entry:

(6.31)
sh : gggaaash,aaa′ → (•,

( −1 (0,a′3−a
′
2)

0 1

)
,
( −1 (−a,a′3−2a′2)

0 1

)
, •)

q2 : gggaaash,aaa′ → (•,
( −1 2(a,a′2)−(−a,−a′3)

0 1

)
,
( −1 (a,a′2)

0 1

)
, •).

That is, sh is represented by
( −1 −2

1 1

)
and q2 is represented by

(
2 1
−1 0

)
. The

square of
( −1 −2

1 1

)
is −I2, whose effect is inner equivalent to I2 by conjugating

gggaaa,aaa′ by
( −1 0

0 1

)
. Multiply q1q2q1 = q2q1q2 by q−1

2 to get q1q2. That acts as

( −1 −2
1 1

)(
2 1
−1 0

)−1 =
( −2 −3

1 1

)
.

Check this has order 3. Therefore elements of respective order 3 and 2, independent

of `, represent the actions of γ0 and sh.

So, they give generators for PSL2(Z), as expected. Now, combine the PSL2

action with conjugations on the inner braid components from the action of (6.30b)

from the lift invariant. Ch. 3 Prop. 2.19 then gives the full action of GL2(Z/`)/〈±1〉.
That concludes the proof. �

3.3.3. What happens if ` = 2. The phrasing, say of [BFr02, §1.1], only referred

to D` (or (Z/`)2 ×sZ/2), for ` odd, because we assumed G is `-perfect. We amend

this to include all `, a special case of our folding under the Ext-Frattini covers of

Prop. 2.6. By not having considered the prime 2 divisor of D`, when ` is odd, we

are following the type-1 paradigm in case RETURNM. Now we are following the

type-2 paradigm.

At level k = 0 for ` = 2, there are these tiny groups:

(6.32a) For X0(Z/2), D2 (a Klein 4-group); and

(6.32b) for X(Z/2), (Z/2)2 ×sZ/2.

4. Proof of the Upper half-plane Paradigm
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4.1. Proof of Thm. 2.7.

4.2. Proof of Thm. 2.14. [BFr02, §2.6] takes a completely cohomological

approach to the properties listed in (2.28). We give an example.

[BFr02, §2.6.4] works on the complements of Q′′ (a Klein 4-group, and therefore

abelian according to Prop. 2.10) in M4. This starts with seeing directly one splitting

by the group Γ′1 = 〈q1〈z̃〉, q2〈z̃〉〉. As in Def. 1.7, splittings correspond to elements

of H1(Γ′1,Q′′). Conclude (2.28d) if this cohomology group has order 2.

Let B be the largest elementary abelian 2-group quotient of the rank 2 free group

CenΓ′1
(Q′′). Then B and Q′′ are isomorphic as F2

[
Γ′1
]

modules. For any group G

with normal subgroup H acting on a module M , there is an exact sequence [AW67,

p. 100]:

(6.33) 0→H1(G/H,MH)
inf−→H1(G,M)

res−→H1(H,M)G → H2(G/H,MH).

Apply this with M = Q′′, G = Γ′1 and H = CenΓ′1
(Q′′), so G/H = S3. Restrict to a

2-Sylow P2 of S3. Restriction of an element from H∗(G,A) to H∗(P,A) is injective

if P is the p-Sylow of G [AW67, p. 105] (more precisely in the footnote near the

beginning of §1.4). Therefore, if H∗(P2,M
H) is trivial, so is H∗(G/H,MH).

The action of P2 on Q′′ is the regular representation on two copies of P2, so

Q′′ is a free P2 module and the cohomology groups H1(G,M) and H2(G,M) are

trivial. Conclude: H1(Γ′1,Q′′) = Hom(B,Q′′)S3 = Z/2.

Those two conjugacy classes of subgroups of M4 that are isomorphic to PSL2(Z)

are joined by the relation q1q
−1
3 = 1.

4.2.1. A presentation of Mr. §2.2 defines the mapping class group Mr as the

image group of Hr acting on the Nielsen class Ni(Ḡr,Cḡgg)
in. This is given by the

action by the braids Q1, . . . , Qr−1 modulo the action by inner automorphisms,

Inn(Ḡr), of Ḡr. mapping ḡ1, . . . , ḡr to permutations of their conjugates. This maps

Br (relations given by (2.13)) to Mr factoring through Hr.

Further, Mr is the quotient of Br by the relations (6.34):

(6.34)
τ1(r) = (Qr−1Qr−2 · · ·Q2)r−1, τ2(r) = Q−2

1 (Qr−1 · · ·Q3)r−2, . . . ,
τ`+1(r) = (Q` · · ·Q1)−`−1(Qr−1 · · ·Q`+2)r−`−1, . . . ,
τr−1(r) = (Qr−2 · · ·Q1)1−r, and τ(r) = (Qr−1 · · ·Q1)r.

This complicated presentation, from [KMS66, §3.7] or [Ma34], is oblivious to

the map Hr →Mr dominating this paper. Using it conceptualizes Nr = ker(Br →
Mr). The switch of emphasis shows in Prop. 2.9.

With Q1Q2 · · ·Q2
r−1 · · ·Q2Q1 = R1, consider these additional elements:

(6.35) R2 = Q−1
1 R1Q1, . . . , Rr = Q−1

r−1R1Qr−1 and (Q1Q2 · · ·Qr−1)r.

The relation between the maps Br → Hr and Br →Mr amounts to a compar-

ison of (6.34) with (6.35). Thm. 2.14 presents both M4 and N4 memorably. Here

our remarks comment on what the argument does for the case of general r.
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